

VERTEBRATES THAT SHARE ITS HABITAT WITH *Lepus flavigularis*, AN ENDANGERED LEPORIDVERTEBRADOS QUE COHABITAN CON *Lepus flavigularis*, UN LEPORIDO EN PELIGRO DE EXTINCIÓNAndrea Santizo-Nanduca¹, Tamara Rioja-Paradela^{1,2*}, Arturo Carrillo-Reyes^{1,2} y Eduardo Espinoza-Medinilla¹

1. Sustentabilidad y Ecología Aplicada, Universidad de Ciencias y Artes de Chiapas. Libramiento Nte. Pte. 1150, Col. Lajas Maciel, C.P. 27000, Tuxtla Gutiérrez, Chiapas, México

2. Oikos: Conservación y Desarrollo Sustentable, A.C., Calle Bugambilias 5, Col. Bismarck, C.P. 29267, San Cristóbal de las Casas, Chiapas, México.

*Autor para Correspondencia: tamararioja@gmail.com

RECIBIDO: 13 / 01 / 2017

RESUMEN

ACEPTADO: 02 / 02 / 2017

PALABRAS CLAVE:
 Istmo de Tehuantepec
 fauna
 lagomorfo
 pastizal
 riqueza

KEYWORDS:
 Tehuantepec Isthmus
 fauna
 grassland
 lagomorph
 richness

Se registró la diversidad estacional y anual de vertebrados en el pastizal abierto (hábitat de *Lepus flavigularis*) en Santa María del Mar, Juchitán de Zaragoza, Oaxaca. El estudio se realizó entre octubre del 2015 y mayo del 2016 mediante dos muestreos en estación húmeda y dos en seca. Se utilizaron transectos de ancho fijo para monitoreo de herpetofauna; transectos lineales de ancho variable para aves; cámaras trampa para mamíferos medianos y grandes; redes de niebla para quirópteros, y trampas Sherman para mamíferos pequeños. La diversidad alfa estacional y anual se analizó utilizando los índices de Shannon (H') y Simpson (1/D), la diversidad beta con coeficiente de disimilitud de Jaccard (J), y la comparación estacional mediante la prueba U Mann-Whitney (W). Se registraron 77 especies de vertebrados. Para reptiles, la diversidad alfa anual fue de $H' = 1.2640$ y $1/D = 2.5905$; para aves de $H' = 2.7597$ y $1/D = 9.8032$; y para mamíferos medianos y grandes de $H' = 1.3100$ y $1/D = 2.6702$. No se encontraron diferencias estacionales para la diversidad de reptiles ($W = 94$, $p = 0.2052$) y mamíferos ($W = 14$, $p = 0.5584$), pero sí para aves ($W = 801$, $p = 0.0202$). Para reptiles (cuantitativo $J = 0.6666$; cuantitativo $J = 0.4433$) y mamíferos (cuantitativo $J = 0.6666$; cuantitativo $J = 0.6352$), se comparten pocas especies estacionalmente, no así para aves (cuantitativo $J = 0.3829$; cuantitativo $J = 0.6430$). Probablemente la presencia del fenómeno climático El Niño, que acentuó la sequía en el área de estudio, haya contribuido a que la diversidad de anfibios, reptiles y mamíferos fuera menor a la esperada.

ABSTRACT

Seasonal and annual vertebrate diversity that cohabit with the Tehuantepec jackrabbit (*Lepus flavigularis*) in Santa María del Mar, Juchitán de Zaragoza, Oaxaca, were recorded. The study was carried out between October of 2015 and May of 2016 (two samplings in the wet season and two in the dry season). Fixed-width transects were used to monitor amphibians and reptiles; variable width transects for birds; camera trapping for medium and large mammals; fog networks for flying mammals and Sherman traps for small mammals. Seasonal and annual alpha diversity were analyzed using Shannon (H') and Simpson (1/D) indices, beta diversity with Jaccard dissimilarity indices (J), and the seasonal comparison with Mann-Whitney U test (W). We recorded 77 vertebrate species. For reptiles, annual alpha diversity was $H' = 1.2640$ and $1/D = 2.5905$; for birds was $H' = 2.7597$ and $1/D = 9.8032$; and for medium and large mammals was $H' = 1.3100$ and $1/D = 2.6702$. No significant seasonal differences were found for reptiles ($W = 94$, $p = 0.2052$) and mammals ($W = 14$, $p = 0.5584$) diversity, but it was found for birds ($W = 801$, $p = 0.0202$). For reptiles (qualitative $J = 0.6666$; quantitative $J = 0.4433$) and mammals (qualitative $J = 0.6666$, quantitative $J = 0.6352$), few species are seasonally shared, but not for birds (qualitative $J = 0.3829$, quantitative $J = 0.6430$). It is likely that the presence of the El Niño climatic phenomenon, which accentuated the drought in the study area, has contributed to the diversity of some groups was less than expected.

INTRODUCTION

Mexico is one of the five megadiverse worldwide countries (CONABIO, 2008; Navarro-Sigüenza et al., 2014) and the Tehuantepec Isthmus is one of the richest regions in this country (Casas-Andrew et al., 2004). Its biological diversity is because it is a biogeographical barrier for incapable species to cross lands with abrupt altitudinal changes, and because the Tehuantepec Isthmus is located in the contact zone of the Neotropical and Nearctic biogeographic regions (Pérez-García et al., 2001). Also, it is a center of endemism for terrestrial vertebrates (Casas-Andrew et al., 2004; González et al., 2004), such as the Tehuantepec jackrabbit (*Lepus flavigularis*), a species catalogued as Endangered (EN) by the IUCN Red List of Threatened Species (Cervantes et al., 2016) and currently considered the most endangered lagomorph species worldwide due to anthropogenic activities such as agriculture, urban development and illegal hunting (Lorenzo et al., 2015). These species populations are currently genetically isolated from each other, making *L. flavigularis* more susceptible to extinction which would mean a significant change in the structure of the grassland community as it plays an important ecological role being part of the trophic networks, and regulating the botanical composition of its habitat (Lorenzo et al. 2015). Different studies have been carried out with the purpose of contributing to the knowledge and conservation of the Tehuantepec jackrabbit (*L. flavigularis*) recording its distribution, population density, reproductive behavior, home range, habitat use, diet, its morphological and genetic characteristics, as well as the effect of anthropogenic activities (extense livestock farming) on its ecology (Rico et al., 2007; Lorenzo et al., 2008; Rioja et al., 2008; Carrillo-Reyes et al., 2010; Rioja et al., 2011; Carrillo-Reyes et al., 2012; Sántiz et al., 2012; Rioja and Carrillo Reyes, 2014; Lorenzo et al., 2015; Luna et al., 2016; Rioja et al., 2016). However, no studies have been focused on the diversity of vertebrates that cohabit with *L. flavigularis*. Inventories are of great importance because they serve as a repository of data on species residing in a place (Dirzo and Raven 1994). Also, through these studies it is possible to know the distribution of species in different ecosystems, and therefore to develop management and conservation plans in a given region. It is important to consider that the information obtained from the inventories constitutes the basic unit of biosystematic research, so that derived information of these inventories is essential for the advancement of other academic areas such as evolutionary biology, biogeography, comparative anatomy, ecology, among others (Casas-Andrew et al., 2004). The purpose of this study is for the first time to record the diversity of terrestrial vertebrates in the Tehuantepec jackrabbit (*L. flavigularis*) habitat at Santa María del Mar, municipality of Juchitán de

Zaragoza, Oaxaca. The anterior is key information to develop conservation and management protocols of this lagomorph and its habitat.

MATERIALS AND METHODS

Study site. The study site covers an area of 14 km² of the locality of Santa María del Mar (16°14'7" - 16°12'46" N and 94°53'9" - 94°48'15" W) in the municipality of Juchitán de Zaragoza, in Oaxaca state, Mexico. It is located in the south of the semi-arid region of the Tehuantepec Isthmus, between a coastal lake (Mar Tileme) and the Pacific Ocean. The town is inhabited by 862 people of indigenous (Huave) origin (Instituto Nacional de Estadística y Geografía, 2014). The main productive activities in the area are fishing, livestock production and, occasionally seasonal agriculture and subsistence hunting (Carrillo-Reyes et al., 2010). The local climate type is Awo, tropical wet with a pronounced dry season, the driest month has a precipitation less than 60mm and an average annual temperature of 25°C and average annual precipitation of 800mm; the wet season occurs between May and October with a short dry period in August, while the dry season begins in November and ends in April (García and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [CONABIO], 1998). The habitat of *L. flavigularis* never exceeds 4 or 5 km wide on the shores of salt lagoons and is characterized by extensive zones of grassland, dominated by *Eragrostis prolifera* Steud with an importance value of 64.48, *Jouvea pilosa* J. Presl with an importance value of 49.56, and *Whalteria presliae* Walp with an importance value of 41.15 and isolated elements of species such as *Opuntia tehuantepecana* Bravo and *Opuntia decumbens* Salm-Dyckes; these areas are utilized for cattle husbandry (Pérez-García et al., 2001; Rzedowski, 2006; Carrillo-Reyes et al., 2010).

Monitoring. A total of four visits were made to the site between October 2015 and May 2016 (two in each season of the year). Each visit lasted a minimum of five consecutive days. The monitoring area corresponded only to the Tehuantepec jackrabbit (*L. flavigularis*) habitat (open grasslands; Carrillo-Reyes et al., 2010). Herpetofauna (amphibians and reptiles) monitoring was made through fixed-width line transects (500 m length and fixed width of 10 m) according to Muñoz-Alonso, 2012. A total of four transects were established at random across the jackrabbit habitat, and each transect was covered three consecutive days per visit. The observations were made from 9:00 h to 12:00 h and from 19:00 h to 00:00 h, during the greater activity of amphibians and reptiles (Jones, 1986). Reptiles and amphibians were located on both sides of the transect; once located, the individuals were georeferenced using a manual receiver of the geolocation system (GPS,

Garmin™ etrex Vista) and recorded the number and the type of plant association where these were captured; photographs of each specimen were taken whenever it was possible. In the case of amphibians the capture was carried out manually; for reptiles, the techniques of capture varied, using rods with sliding ties of hemp thread and manual collection for lacertilians, non-venomous snakes and terrestrial and freshwater turtles, and for the case of venomous snakes were used herpetological tongs 44" length (Karns, 1986; Casas-Andrew et al., 2004). Once the identification of the specimens was carried out, individuals were released at the site where they were found. Taxonomic determination of the individuals was carried out with aid of specialized literature: Campbell and Lamar (1989); Flores-Villela et al. (1995); Conant and Collins (1998); Powell et al. (1998) and Lee (2000). The nomenclatural information was based on the work of Casas-Andrew et al. (2004); Flores-Villela, Canseco-Márquez (2004), Frost et al. (2006) and a review of the works of Köhler (2003) and Köhler (2011) on reptiles and amphibians from Central America, respectively.

Bird monitoring was made through variable-width linear transects (2 km length; Sutherland, 2006; Rioja et al., 2013). A total of three fixed transects were established across the jackrabbit habitat, and each transect was surveyed simultaneously by two observers by walking twice a day: 06:00-10:00 h and 15:00-19:00 h. The starting point of the transect was alternated for every survey to reduce the effect of time of the day on the recordings. Visual observations of the bird species were recorded during a total of 96 observation hours in 12 days of field monitoring. Observations were carried out using binoculars (Konus®, 10x50). Bird species were identified using the field guides of Peterson and Chalif (1989); Howell and Webb (1995) and Sibley (2000). Scientific taxonomic arrangement nomenclature and common names were described according to the American Ornithologists' Union [AOU] (2016). The birds were photographed to obtain an illustrative collection of the species recorded when possible. The following parameters were recorded for each observed individual or group: transect, habitat type, coordinates, perpendicular distance to transect (using a Bushnell® Laser Legend 1200ARC rangefinder), species and number of individuals (Bibby et al., 2000; Gregory et al., 2004). Large and medium mammals monitoring was made using trail cameras, placing 20 simple monitoring stations (CuddebackTM, Ambush IR, model 1187, resolution 5 Megapixels). These were placed along two transects, with five trail cameras within each, located at approximately 150 meters between each one (Chávez et al., 2013). The trail cameras were active for a total of 12 days of field monitoring. Each trail camera was programmed to remain active throughout the night, with a maximum delay of five seconds between each

shot, recording still images and video. Small mammals (rodents) monitoring was made through 24 Sherman traps distributed into two linear transects, each placed 50 meters apart across the jackrabbit habitat for four consecutive nights for each field visit (20 days of field monitoring), and barley with oats, vanilla and peanut butter (Becerril-Tesillo, 2006); transects were randomly placed and east-west oriented; finally, for bat monitoring, two mist nets were placed for three consecutive nights in every visit to study area, starting at 19:00 h and remained open until 12:00 h nets were placed in two sites previously selected in which the movement of bats was observed due to the presence of small puddles. The captured individuals were placed in cloth sacks and released after identification (Saldaña-Vázquez, 2010). In order to identify species, the Mammalian Guides of Central America and Southeastern Mexico (Reid, 2009) and the field identification code of Mexican Bats were used (Medellín and Sánchez, 1997). Priority vertebrate species were identified according to the Standard Mexican Official NOM-059-SEMARNAT-2010 (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2010). In addition, the presence of species on the International Union Conservation of Nature's Red List (IUCN, 2017), as well as listed species in one of the appendices of the Convention on International Trade in Threatened Species of Wild Fauna and Flora (CITES, 2017) was registered.

Analysis of Data. The species accumulation curve was obtained to determine the estimated precision of the sampling effort of each of the monitoring methods. The curve was constructed using the method of random species accumulation (Gotelli and Colwell, 2001). Species richness was plotted using the Bootstrap estimator (Smith and Van Belle, 1984). Seasonal and annual specific richness was estimated for each of group using the number of species recorded during the four field visits, two in the wet season and two in the dry season (Santizo, 2016). The seasonal and annual relative abundance by taxonomic group was also calculated; for herpetofauna it was based on the total abundance of individuals relative to the total number of individuals of all species recorded (Franco-Lopez et al., 1985; Naranjo and Bolaños, 2003); for birds with the Horvitz-Thompson transect variable-width estimator (Miller, 2016); for medium and large mammals by means of the number of independent photographic events between the number of effective days for each monitored season; for small mammals by the capture effort (López et al., 2009) and for bats by the number of individuals/meters net * hours of sampling (Medellín, 1993). The seasonal and annual alpha diversity were calculated using Simpson (1/D) and Shannon (H') indices (Rioja et al., 2013; Rioja and Carrillo-Reyes, 2014). The similarity between seasons (beta diversity) was calculated using quantitative and qualitative

Jaccard indices (J) (Moreno, 2001). The nonparametric Mann-Whitney U test (W) was used to compare the diversity of each group seasonally (Badii et al., 2012; Rioja et al., 2013; Rioja and Carrillo-Reyes, 2014). All statistical analyses were performed using R software (R Development Core Team, 2015), and vegan Packages (Oksanen et al., 2017), fossil (Vavrek, 2011), distance (Miller, 2016) and BiodiversityR (Kindt and Coe, 2005).

RESULTS

Species accumulation curve. According to the Bootstrap estimator (1979), the sampling effort was satisfactory for reptiles (12 species or 87.46%, N = 13.72), birds (49 species or 95.20%, n = 51.47) and medium and large mammals (6 species or 85.71%, n = 7), whereas not sufficient records were obtained for amphibians, bats and rodents to perform the accumulation curve.

Species composition and richness. For amphibians, small mammals (rodents) and bats, statistical analyzes could not be performed, since only one species of amphibian (*Scinax staufferi* Cope, 1865), one species of rodent (*Liomys pictus* Thomas, 1893), and two species of bats (*Artibeus Jamaicensis* Leach, 1821 and *Myotis thysanodes* Miller, 1897) were recorded during the wet season. It should be mentioned that none of these species are within a category of risk according to the Red List (IUCN, 2017), and do not appear within any category according to NOM-059-SEMARNAT-2010 (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2010) or within none of the CITES Appendices (CITES, 2017). For reptiles, the annual richness was 15 species. During the dry season, a richness of eight species was registered and during the wet season a richness of 15 species was registered. The scorpion turtle (*Kinosternon scorpioides*) and the brown coral (*M. browni*) are listed under Special Protection according to the NOM-059-SEMARNAT-2010 (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2010), the green iguana (*Iguana iguana*) as Endangered Species, meanwhile the boa (*Boa constrictor*), the spotted striped snake (*Thamnophis marcianus*), the striped iguana (*Ctenosaura similis*) and the mexican spiny iguana (*C. pectinata*) are Threatened according to the NOM-059-SEMARNAT-2010 (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2010). It should be mentioned that only the boa (*B. constrictor*) appears within Appendix II of CITES (CITES, 2017) (Table 1). For birds, the annual richness was 49 species, registering 41 species for the wet season and 36 species for the dry season. Only two species (*Colinus virginianus* and *Thalasseus elegans*) are found to be Almost Threatened according to BLI (BirdLife International, 2016) and IUCN (2017) (Table 2). Finally, for medium and large mammals there was an annual richness of nine species; five species in wet

season and four species in dry season. All mammals species are classified as a Minor Concern according to the IUCN Red List of Threatened Species (IUCN, 2017), and only the Tehuantepec jackrabbit (*L. flavigularis*) is in danger of extinction according to this list and with the NOM-SEMARNAT-2010 (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2010). No mammal species appears in CITES (2016) (Table 3).

Relative abundance. Throughout the study, the most abundant reptile species were the seven-line huico (*A. deppii*) followed by the pink-bellied squamish gecko (*S. variabilis*) and the common home gecko (*Hemidactylus frenatus*), and the less abundant were the striped guinea pig (*Conophis vittatus vittatus*), followed by the brown bass (*Basiliscus vittatus*) and the petalillos (*Drymobius margaritiferus*) (Table 1). The most abundant bird species were the major zanate (*Quiscalus mexicanus*), the common ground-dove (*Columbina passerina*), and the white winged pigeon (*Zenaida asiatica*), while the less abundant were the teal (*Spatula discors*), the green egret (*Butorides virescens*) and the collared plover (*Charadrius*) with a single record throughout the monitoring to name some (Table 2). Finally, the most abundant medium and large mammals species were the Tehuantepec jackrabbit (*L. flavigularis*), the gray fox (*Urocyon cinereoargenteus*) and the coyote (*Canis*), while the least abundant species were the white back skunk (*Mephitis macroura*) and the armadillo (*Dasypus novemcinctus*) (Table 3).

Alpha diversity. The Shannon and Simpson indices indicated that the study area showed a reptiles diversity of $H' = 1.2640$ and $1/D = 2.5905$ throughout the year, for the wet season the alpha diversity was $H' = 1.3434$ and $1/D = 2.8843$ and for the dry season was $H' = 1.0008$ and $1/D = 2.1258$. The alpha diversity of birds throughout the year was $H = 2.7597$ and $1/D = 9.8032$, for the wet season was $H = 2.6962$ and $1/D = 10.4400$ and for the dry season was $H = 2.3426$ and $1/D = 6.1572$. Finally, for medium and large mammals the alpha annual diversity was $H' = 1.2100$ and $1/D = 2.6702$, for the wet season was $H' = 1.295$ $1/D = 3.3602$ and for the dry season was $H' = 0.8369$ and $1/D = 1.7142$.

Beta diversity. According to Jaccard qualitative and quantitative dissimilarity indices, few reptile species are shared between the wet and dry seasons, with homogeneous abundances ($J = 0.6666$ and $J = 0.4433$, qualitative and quantitative respectively). In the case of birds, the Jaccard dissimilarity indices presented values of $J = 0.3829$ and $J = 0.6430$ (qualitative and quantitative respectively), indicating that the composition of species in the wet season is very similar to dry season, with abundances that behave differently between the two seasons. Finally, the Jaccard qualitative and quantitative dissimilarity indices showed that medium and large

mammals composition and their abundances are dissimilar between seasons ($J=0.6666$ and $J=0.6352$, qualitative and quantitative respectively).

Seasonal comparison of diversity. The U Mann-Whitney test revealed that reptile diversity ($W = 94$,

$p = 0.2052$) and medium and large mammals diversity ($W = 14$, $p = 0.5584$) show no statistically significant difference between the dry and wet seasons. For birds, there was a statistically significant difference ($W = 801$, $p = 0.0202$), with a higher diversity during the wet season.

Table I. List of reptiles species found in Santa María del Mar, Oaxaca, México

Species	Common name	NOM ¹	IUCN ²	CITES ³	AR-WET ⁴	AR-DRY ⁵	A _{ANUAL} ⁶
SQUAMATA							
Corytophanidae							
<i>Basiliscus vittatus</i>	Brown Basilisk				0.0208	0.0	0.0104
Gekkonidae							
<i>Hemidactylus frenatus</i>	Common House Gecko		LC		0.4166	0.125	0.2708
Iguanidae							
<i>Iguana iguana</i>	Common Green Iguana	P	LC		s/d	s/d	s/d
<i>Ctenosaura pectinata</i>	Western Spiny-tailed Iguana	A			s/d	s/d	s/d
<i>Ctenosaura similis</i>	Common Spiny-tailed Iguana, Black Iguana, Black Spiny-tailed Iguana	A	LC		0.0	0.1041	0.0520
Prynosomatidae							
<i>Sceloporus siniferus</i>	Longtail Spiny Lizard		LC		0.0416	0.0	0.0208
<i>Sceloporus variabilis</i>	Rosebelly Lizard				1.3333	0.6666	1
Teiidae							
<i>Aspidoscelis deppii</i>	Blackbelly Racerunner		LC		1.9791	1.5416	1.7604
Colubridae							
<i>Drymobius margaritiferus</i>	Speckled Racer		LC		0.0416	0.0	0.0208
<i>Masticophis mentovarius</i>	Neotropical Whip Snake				0.125	0.0	0.0625
Natricidae							
<i>Thamnophis marcianus</i>	Checkered Garter Snake	A			0.0833	0.0208	0.0520
Boidae							
<i>Boa constrictor</i>	Boa	A		II	s/d	s/d	s/d
Dipsadidae							
<i>Conophis vittatus vittatus</i>	Striped Road Guarder		LC		0.0208	0.0	0.0104
Elapidae							
<i>Micrurus browni</i>	Brown's Coral Snake	Pr	LC		s/d	s/d	s/d
TESTUDINES							
Kinosternidae							
<i>Kinosternon scorpioides</i>	Scorpion Mud Turtle	Pr			0.0625	0.0	0.0312

¹Mexican legislation category according to SEMARNAT (2010), Pr=Special protection, A=Threatened, P=Extinction risk. ²Red list category (IUCN, 2017; LC=Least concern). ³Appendices of CITES (2017). ⁴Relative abundance for wet season. ⁵Relative abundance for dry season. ⁶Anual relative abundance.

Table II. List of bird species found in Santa María del Mar, Oaxaca, México. Species arrangement according to AOU (2016).

Species	Common name	MS ¹	NOM ²	IUCN ³	BLI ⁴	CITES ⁵	AR-WET ⁶	AR-DRY ⁷	ARANUAL ⁸
ANSERIFORMES									
Anatidae									
<i>Dendrocygna autumnalis</i>	Black-bellied Whistling-duck	R		LC	LC		6.1800	0.0	3.0009
<i>Spatula discors</i>	Blue-winged teal	Nb		LC	LC		0.25	0.0	0.1250
GALLIFORMES									
Odontophoridae									
<i>Colinus virginianus</i>	Northern Bobwhite	R		NT	NT		0.7500	0.5	0.6250
SULIFORMES									
Fregatidae									
<i>Fregata magnificens</i>	Magnificent Frigatebird	Nb		LC	LC		0.5	0.0	0.25
Phalacrocoracidae									
<i>Phalacrocorax brasiliensis</i>	Neotropic Cormorant	R		LC	LC		0.75	2.2850	1.5175
PELECANIFORMES									
Pelecanidae									
<i>Pelecanus occidentalis</i>	Brown Pelican	Nb		LC	LC		5.4575	0.0	2.7287
Ardeidae									
<i>Ardea herodias</i>	Great Blue Heron	Wv		LC	LC		0.25	2.5025	1.3762
<i>Ardea alba</i>	Great Egret	R		LC	LC		2.3325	3.1275	2.73
<i>Egretta thula</i>	Snowy Egret	R		LC	LC		0.25	0.0	0.125
<i>Bubulcus ibis</i>	Cattle Egret	R		LC	LC		3.305	2.7525	3.0287
<i>Butorides virescens</i>	Green Heron	R		LC	LC		0.25	0.0	0.125
CATHARIFORMES									
Cathartidae									
<i>Coragyps atratus</i>	Black Vulture	R		LC	LC		2.1275	6.1125	4.12
<i>Cathartes aura</i>	Turkey Vulture	R		LC	LC		2.3475	15.83	9.0887
ACCIPITRIFORMES									
Accipitridae									
<i>Rupornis magnirostris</i>	Roadside Hawk	R		LC	LC		0.0	0.5	0.25
GRUIFORMES									
Rallidae									
<i>Fulica americana</i>	American Coot	Wv		LC	LC		0.5	0	0.25
CHARADRIIFORMES									
Burhinidae									
<i>Burhinus bistriatus</i>	Double-striped Thick-knee	R		LC	LC		0.75	0	0.375
Charadriidae									
<i>Pluvialis squatarola</i>	Black-bellied Plover	Wv		LC	LC		0.75	7.0775	3.9137

Table II. Continuation

<i>Charadrius collaris</i>	Collared Plover	R	LC	LC	0.25	0	0.1250
<i>Charadrius semipalmatus</i>	Semipalmated Plover	Wv	LC	LC	0.5	0.25	0.3750
<i>Charadrius vociferus</i>	Killdeer	Wv	LC	LC	0.25	0	0.1250
Scolopacidae							
<i>Tringa semipalmata</i>	Willet	Nb	LC	LC	0.25	0.0	0.125
<i>Bartramia longicauda</i>	Upland Sandpiper	Nb	LC	LC	0.25	0.0	0.125
<i>Numenius phaeopus</i>	Whimbrel	Wv	LC	LC	9.22	4.385	6.8025
<i>Arenaria interpres</i>	Ruddy Turnstone	Nb	LC	LC	1.665	0.0	0.8325
Laridae							
<i>Larus atricilla</i>	Laughing Gull	Nb	LC	LC	1.00	0.5	0.75
<i>Larus pipixcan</i>	Franklin's Gull	T	LC	LC	0.5	4.005	2.2525
<i>Thalasseus elegans</i>	Elegant tern	T	NT	NT	1.00	1.00	1.00
COLUMBIFORMES							
Columbidae							
<i>Columbina inca</i>	Inca dove	R	LC	LC	0.5	0.0	0.375
<i>Columbina passerina</i>	Common Ground-dove	R	LC	LC	47.0575	13.8125	30.435
<i>Zenaida asiatica</i>	White-winged Dove	Wv	LC	LC	34.3875	0.75	17.568
<i>Zenaida macroura</i>	Mourning Dove	R	LC	LC	14.2375	0.25	7.2437
CUCULIFORMES							
Cuculidae							
<i>Crotophaga sulcirostris</i>	Groove-billed Ani	R	LC	LC	0.5	0.75	0.625
CAPRIMULGIFORMES							
Trochilidae							
<i>Archilochus colubris</i>	Ruby-throated Hummingbird	Nb	LC	LC	0.945	0	0.4725
Caprimulgidae							
<i>Chordeiles minor</i>	Common Nighthawk	R	LC	LC	31.8825	0	15.941
PICIFORMES							
Picidae							
<i>Melanerpes aurifrons</i>	Golden-fronted Woodpecker	R	LC	LC	0.0	0.25	0.125
FALCONIFORMES							
Falconidae							
<i>Caracara cheriway</i>	Crested Caracara	R	LC	LC	0.0	0.5	0.25
<i>Falco sparverius</i>	American Kestrel	Nb	LC	LC	13.925	12.8075	13.3662
PASSERIFORMES							
Tyrannidae							
<i>Pitangus sulphuratus</i>	Great-tailed Grackle	R	LC	LC	3.63	0.5	2.065
<i>Tyrannus verticalis</i>	Western Kingbird	Wv	LC	LC	0.25	0.0	0.125
<i>Tyrannus forficatus</i>	Scissor-tailed Flycatcher	Wv	LC	LC	30.7525	0.25	15.5012
Corvidae							
<i>Calocitta formosa</i>	White-throated Magpie-jay	R	LC	LC	0.25	0.25	0.25
Alaudidae							
<i>Eremophila alpestris</i>	Horned lark	R	LC	LC	1.0	0.5	0.75
Mimidae							
<i>Mimus gilvus</i>	Tropical Mockingbird	R	LC	LC	22.4	11.205	16.8025
Parulidae							
<i>Geothlypis trichas</i>	Common Yellowthroat	Nb	LC	LC	0.25	0.0	0.125
<i>Peucaea ruficauda</i>	Stripe-headed Sparrow	R	LC	LC	3.38	0.25	1.815

<i>Pooecetes gramineus</i>	Vesper Sparrow	R	LC	LC	15.9	0.5	8.2
<i>Chondestes grammacus</i>	Lark sparrow	R	LC	LC	0.0	0.25	0.125
<i>Quiscalus mexicanus</i>	Great Kiskadee	R	LC	LC	66.4125	62.0975	64.255
<i>Icterus gularis</i>	Altamira oriole	R	LC	LC	0.5	0.25	0.375

¹Migratory status (Sr=Summer resident, R=Resident breeder, T=Transient migrant, Wr=Winter visitor, and Nb=Non- breeding visitor).

²Mexican legislation category according to SEMARNAT (2010). ³Red list category (IUCN, 2017; LC=Least concern, NT=Near threatened). ⁴BirdLife international category (LC=Least concern, Nt=Near threatened). ⁵Appendices of CITES (2017). ⁶Relative abundance for wet season. ⁷Relative abundance for dry season. ⁸Anual relative abundance.

Table III.- List of mammal species found in Santa María del Mar, Oaxaca, México.

Species	Common name	NOM ¹	CITES ²	IUCN ³	AR-WET ⁴	AR-DRY ⁵	ANUAL ⁶
CARNIVORA							
Canidae							
<i>Canis latrans</i>	Coyote			LC	10.52631	5.26315	7.8947
<i>Urocyon cinereoargenteus</i>	Gray Fox			LC	15.7894	0.0	7.8947
Procyonidae							
	<i>Procyon lotor</i> Northern Raccoon			LC	10.5263	0.0	5.2631
Mephitidae							
<i>Mephitis macroura</i>	Hooded Skunk			LC	0.0	5.2631	2.6315
	<i>Spylogale gracilis</i> Western Spotted Skunk			LC	s/d	s/d	s/d
CINGULATA							
Dasypodidae							
	<i>Dasypus novemcinctus</i> Nine-Banded Armadillo			LC	s/d	s/d	s/d
DIDELPHIMORPHIA							
Didelphidae							
	<i>Didelphis marsupialis</i> Common oposum			LC	0.0	5.2631	2.6315
LAGOMORPHA							
Leporidae							
	<i>Lepus flavigularis</i> Tehuantepec jackrabbit	P		EN	31.5789	47.3684	39.4736
	<i>Sylvilagus floridanus</i> Eastern Cottontail			LC	s/d	s/d	s/d

¹Mexican legislation category according to SEMARNAT (2010; P=Endangered risk). ²Appendices of CITES (2017). ³Red list category (IUCN, 2017; LC=Least concern, EN=Endangered). ⁴Relative abundance for wet season. ⁵Relative abundance for dry season. ⁶Anual relative abundance.

DISCUSSION

A complete inventory of the vertebrates that live in the Santa María del Mar grasslands was obtained. Regarding the accumulation of species, the monitoring was adequate for the different groups, registering 87.46% of reptiles, 95.20% of birds and 85.71% of mammals expected. According to the literature, when the percentage of species found is greater than 70% of the total estimated richness, monitoring is satisfactory (Soberón and Llorente, 1993; Jiménez-Valverde and Hortal, 2003; Pineda-López and Verdú-Faraco, 2013). During the monitoring period, only amphibian species *S. staufferi* was recorded, which was observed only during the wet season; this species was located near to a water source, which is in agreement with its natural history, indicating it can be found in temporary ponds in pastures (Cedeño-Vázquez et al., 2001). We registered only one species of rodent, the spiny mouse (*L. pictus*), that can inhabit a wide variety of habitats, however, it prefers places with seed availability (López et al., 2009). Finally, only two species of bats (*M. thysanodes* and *A. jamaicensis*) were found, which were captured during the wet season; the first is an insectivorous bat that may have foraging sites in open areas with artificial lighting and artificial dikes according to the literature (Fenton et al., 1992; Gehrt and Chelsvig, 2003; Avila-Flores and Fenton, 2005), which probably allowed it to be in the area despite the fact that it did not have an arboreal stratum. It is important to mention that this bat was captured in the net placed near a small puddle with the presence of insects, which surely is related to the capture of this species. *A. jamaicensis* is a frugivorous bat that can live in a large number of plant communities such as low deciduous forests, savannas, among others (Orozco-Segovia and Vázquez-Yanes, 1982; Fenton et al., 1992; Bredt and Uieda, 1996).

The richness of reptile species recorded in the study site (14 km²) corresponds to 2.82% of the herpetofauna for the entire state of Oaxaca (Casas-Andrew et al., 2004); this result differs from Rioja et al. (2013) who recorded it an area of 20 km² (Montecillo Santa Cruz, municipality of San Francisco del Mar), 49 species of reptiles corresponding to 11.47% of the oaxacan herpetofauna, and from Martín-Regalado et al. (2011), who recorded 36 reptiles at Cerro Guiengola, near Tehuantepec in an area of 4,530 ha (the monitoring took place in a 50% lower area). It should be mentioned that both studies carried out a greater sampling effort, since they comprised 48 and 60 days, respectively, and included different and complex vegetal associations, which could influence the differences of richness recorded between the present study and those. These factors also influenced the different results obtained for birds and mammals; in a previous study in same locality, on a similar surface, but with a monitoring in four different vegetal associations that were sampled during 98 days, Rioja and Carrillo-Reyes (2014) found 75 bird species (10.1% of the total avifauna reported for Oaxaca), while in the present study we recorded 49 species, corresponding to 6.59% of oaxacan birds.

Finally, the mammalian richness recorded in the study area corresponded to 4.05% of the state's mastofauna Santos-Moreno (2014); López et al. (2009) recorded 33 species of mammals (14.86% of the oaxacan mastofauna) in a study carried out at the lagoon area of Tehuantepec Isthmus with different plant associations.

The greatest seasonal and annual diversity was presented in the group of birds (annual: $H'=2.7597$ and $1/D=9.8032$; wet season: $H'=2.6962$ and $1/D=10.4400$), while the mammal group presented the lowest seasonal and annual diversity (annual: $H'=1.2100$ and $1/D=2.6702$; dry season: $H'=0.8369$ and $1/D=1.7142$). No significant seasonal differences were found for reptiles ($W=94$, $p=0.2052$) and mammals ($W=14$, $p=0.5584$) diversity, but it was found for birds ($W=801$, $p=0.0202$). Finally, for reptiles (qualitative $J=0.6666$; quantitative $J=0.4433$) and mammals (qualitative $J=0.6666$, quantitative $J=0.6352$), few species are seasonally shared, but not for birds (qualitative $J=0.3829$, quantitative $J=0.6430$). For reptiles, only the seven lines lizard (*A. deppii*), the pink panza squat lizard (*S. variabilis*) and the common home gecko (*H. frenatus*) were seasonal shared, possibly due to the fact that these species are generalists and have successful thermal characteristics in sites with high solar radiation, such as wooded savannahs or cleared sites, in addition to being tolerant to the disturbance (Vitt et al., 1997; Vitt and Pianka, 2004; Medina-Rangel, 2011), while most of the registered reptiles are specialists, like *D. margaritiferus* and *C. vittatus vittatus* which largely feed on amphibians (García and Ceballos, 1994; Lee, 2000) or with life cycles closely linked to humidity and water bodies (*T. marcianus*, *K. scorpiones* and *B. vittatus*) (Berry e Iverson, 2001; Cadeño-Vázquez et al., 2001), so they were only recorded at one season or another. Also for mammals, few species were seasonally shared, the coyote (*C. latrans*) a generalist and tolerant mammal to habitat disturbance (Leopold, 1977; Pacheco et al., 2006) and the Tehuantepec jackrabbit (*L. flavigularis*); because the study was carried out in *L. flavigularis* habitat, so it is natural to have recorded it throughout the sampling (Rioja et al., 2011; Carrillo-Reyes et al., 2012). In contrast, most of the registered mammals are specialists like the raccoon (*P. lotor*) which presents a diet that varies between seasons; during the dry season approximately 50% of the components of its diet are of vegetal type, whereas in the wet season 70% are of animal type (Guerrero et al., 2000). This may help to explain why the raccoon did not appear in the grassland in the dry season because this plant association does not offer great variety of food resources for this species, in contrast, in the wet season it is possible that this species feeds mainly on animals and it finds them in the grasslands, where mammals, reptiles, and birds are part of its diet (Guerrero et al., 2000). In the case of birds, the species present all year were the most abundant like the zanate (*Q. mexicanus*), white pigeon (*Z. asiatica*), buzzard (*C. aura*), among many others; these species have general habits and are tolerant to the disturbance, developing well in grasslands and open zones (CONABIO 2010; Medina-Rangel, 2011), causing

these species were present all year; in contrast, few species not shared were Anseriformes, Pelecaniformes, Charadriiformes and Passeriformes; many of them are migratory species, which during a determined season migrate to other places (Navarro-Sigüenza et al., 2014) and therefore they were registered in one season, or related with water bodies, finally, it is possible that many of the species of Passeriformes may not have been found during both seasons, because some nesting species are looking for higher strata (canopy) to make their nests in spring (CONABIO, 2010).

Results of composition, richness, alpha and beta diversity are due to different factors, such as monitored area and the simple structure of the type of association sampled (open grassland). The open grassland presents only herbaceous stratum, which implies fewer microhabitats available with macro and microclimatic conditions that only allow the permanence of species with a broad spectrum of tolerance (Medina-Rangel, 2011). In addition, this type of vegetal association confers greater vulnerability to predators so that diversity and its components tend to be smaller (Martín-Regalado, 2011; Medina-Rangel, 2011; Rioja-Paradela et al., 2013).

Another key factor in the composition, richness and diversity results that the study was carried out during an atypical year in terms of weather, related to the presence of El Niño phenomenon, which caused a precipitation deficit in the wet season, resulting in similar temperature and humidity conditions for both seasons, which, according to the literature, causes the weather to tend to warmer conditions all year round (Manson et al., 2009), thus affecting the environmental temperature, rainfall and the formation of temporary bodies of water that occur during the wet season in the grassland association of the study area (Rioja-Paradela et al., 2014), and that this year were not presented, thereby adversely affecting the diversity of amphibians, reptiles, birds and mammals. Weather is a very important factor, which can positively or negatively influence biodiversity. It has been observed that events such as global temperature increase during the last century have affected ecosystems and a wide range of taxa (Hughes, 2000; McCarty 2001; Walther et al., 2002), generating changes in the scheduling of seasonal events (Gilman et al., 2006). These events could be affecting the results of the present study, because between 2015-2016, the phenomenon El Niño was one of the strongest ever recorded, comparable to the episodes of 1982/1983 and 1997/1998 according to data obtained from the National Water Commission (CONAGUA, 2015; CONAGUA, 2016), the annual rainfall of the Tehuantepec Isthmus region was lower than the average (400 mm), being 2015 the driest year for the region, with an intense drought that occurred throughout the South Pacific, in addition to being the warmest year, according to records since 1971, registering temperature increases of up to 3 °C by the end of 2015 for the Pacific region, with El Niño that varied from moderate to strong intensity over the same year (CONAGUA, 2015), precisely where the study area is located.

CONCLUSIONS

The group that presented a greater diversity was birds, followed by mammals and finally reptiles, probably because the first one presents a greater mobility since much of the wealth of birds was composed by shorebirds that found all food and shelter resources in the habitat of Tehuantepec jackrabbit (*L. flavigularis*).

El Niño is a phenomenon that significantly affects biological diversity, modifying through fluctuations in temperature and precipitation the spatial distribution of many species. It is probable that the fact that the study was carried out during an atypical year (the presence of the El Niño phenomenon that caused drought in the study area) was the reason for the diversity of amphibians, reptiles and mammals that cohabit with the Tehuantepec jackrabbit (*L. flavigularis*) was low compared to other studies carried out in previous years in neighboring localities; nevertheless, birds presented a high diversity of species compared to previous studies in the region where the study was located, which is probably due to the great capacity of mobility in this group.

It is considered necessary to continue monitoring these groups so that the structure of the community of vertebrates that cohabit with the Tehuantepec jackrabbit (*L. flavigularis*) can be known during typical and atypical climatic conditions.

All these vertebrate species form an integral part of the trophic networks present in the habitat of the Tehuantepec jackrabbit (*L. flavigularis*), an endemic and endangered species; these vertebrate species are part of the ecosystem of the open grassland, so measures that allow them to remain must be taken, emphasizing those under some category of risk, because in the area activities such as extensive cattle ranching and poaching of species such as the green iguana (*I. iguana*), the striped iguana (*C. similis*) and the boa (*B. constrictor*), and the Tehuantepec jackrabbit (*L. flavigularis*) were carried out. In addition, it should be taken into account that the Isthmus of Tehuantepec is a vertebrate endemism center, and has been classified as IBA (Important Area for the Conservation of Birds) of international BirdLife. The area comprises a range of possible microhabitats for different species of amphibians, reptiles, birds and mammals, making it an important area in which management measures for the conservation of biodiversity should be promoted.

LITERATURE CITED

American Ornithologists' Union (2016) The AOU Checklist of North American Birds, 7th Edition and Supplements. AOU Checklist of North and Middle American Birds. Retrieved from <http://checklist.aou.org/>

Avila-Flores, R., and Fenton, M. B (2005) Use of spatial features by foraging insectivorous bats in a large urban

landscape. *Journal of Mammalogy* 86: 1193-1204.

Badii, M H., Guillén, A, Araiza, L. A, Valenzuela, J, & Landeros, J (2012) Métodos No-Paramétricos de Uso Común. *International Journal of Good Conscience*, 7(1), 132-155.

Becerril-Tesillo, M. (2006) Comparación de algunos parámetros poblacionales de *Peromyscus maniculatus* en áreas de diferente tipo de manejo forestal, en el rancho Santa Elena, Huasca de Ocampo, Hidalgo, México. UAEH.

Berry, J F, and Iverson, J B (2001) Reptilia: Testudines: Kinosternidae, *Kinosternon scorpioides*. Catalogue of American Reptiles and Amphibians. 725. 1-11.

Bredt, A and W Uieda. (1996). Bats from urban and rural environments of the Distrito Federal, mid-western Brazil. *Chiropt. Neotrop.* 2 (2): 54-57.

Bibby, C J, Burgess, N D, Hill, D A, and Mustoe, S H (2000) Bird Census Techniques (2nd ed.). London: Academic Press.

BirdLife international. (2016) Endemic Bird Area factsheet: isthmus of Tehuantepec. Retrieved from <http://www.birdlife.org/>.

Campbell, J A and W W Lamar (1989) The venomous reptiles of Latin America. Comstock/ Cornell University Press, Ithaca, New York.

Carrillo-Reyes A, Lorenzo C, Naranjo E, J Pando, M., and Rioja-Paradela, T (2010) Home range dynamics of the Tehuantepec Jackrabbit in Oaxaca, Mexico. *Mexican Journal of Biodiversity* 81: 143-151.

Carrillo-Reyes, A., C. Lorenzo, T., E. J. Naranjo, and M. Pando-Moreno. 2012. Habitat use of the endangered hare, *Lepus flavigularis*: conservation implications. *Therya* 3:113-125.

Casas-Andrew, G., Méndez de la Cruz, F., and Aguilar Miguel, X (2004) Amphibians and reptiles. In A. García Mendoza, Órdoñez, M., and Briones-Salas, M. Bio-diversity of Oaxaca (pp. 375-390). Mexico D.F.: Oaxacan Fund for the conservation of nature. World wildlife fund.

Cedeño-Vázquez, J. R., Calderón-Mandujano, R. R. and Pozo de la Tijera, C (2001) Rustic guide of the reptiles of the region of Calakmul, Campeche, Mexico. The Colegio de la Frontera Sur, Campeche.

Cervantes, F., C. Lorenzo, V. Fariás, and J. Vargas. 2016. *Lepus flavigularis*. The IUCN Red List of Threatened Species (2008) e.T11790A3306162.

Chavez, C., De la Torre, A., Bárcenas, H., Medellín, R. A., Zarza, H., Ceballos, G (2013) Phototrap manual for the study of wild fauna, the jaguar as a case study. 1st edition. Chavez, WWF-Telcel Alliance, National Autonomous University of Mexico, Mexico. 108.

CITES (Convención sobre el comercio internacional

de especies amenazadas de fauna y flora silvestres) (2017) Apéndices I, II y III de la Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres. Programa de las Naciones Unidas para el Medio Ambiente. Recurso electrónico: <http://www.cites.org/esp/app/appendices.php>.

CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) (1998) La diversidad biológica de México. Estudio de país. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.

CONABIO. (2010) Birds Guide of the Forest The Colomos: An approach to the birds of the Metropolitan Zone of Guadalajara. 137. Available at: <http://www.biodiversidad.gob.mx>

CONABIO (1991) GUIDE TO BIRDS AND ORNATE BIRDS. National Institute of Ecology. 180. In: <http://www.inecc.gob.mx>

CONAGUA, (2015) Annual climate report in Mexico. National Water Comission. Consulted in: <http://smn.cna.gob.mx>

CONAGUA (2016) General Weather Forecast. Consulted in: <http://smn.cna.gob.mx>

Conant, R. & Collins, J. T. (1998) A Field Guide to Reptiles and Amphibians. Eastern and Central North America. Third Edition. Houghton Mifflin Company, Boston, USA.

Conant, R., and J. Collins (1998) Peterson Field Guide to Reptiles and Amphibians (Eastern/Central North America). Boston, Massachusetts, USA: Houghton Mifflin Company.

Dirzo, R. and Raven, P H (1994) Un inventario biológico para México. Boletín de la Sociedad Botánica de México, 55: 29-34.

Fenton, M.B., Acharya, L. Audet, D. Hickey, M.B.C. Merriam, C., Obrist, M.K., and Syme, D.M (1992) Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the Neotropics. *Biotropica*, 24: 440-446.

Franco-López, J., de la Cruz, G., Cruz, A., Rocha, A., Navarrete, N., Flores, G., Kato, E., Sánchez, S., Abarca, LG and Bedia, CM (1985) Ecology Manual. Editorial Trillas, Mexico.

Flores-Villela, O., Mendoza-Quijano, F. & González-Porter, G (1995) Recopilación de claves para la determinación de anfibios y reptiles de México. *Publicaciones Especiales del Museo de Zoología*, 10: 1-285.

Flores-Villela, O. & Canseco-Márquez, L. (2004) Nuevas especies y cambios taxonómicos para la herpetofauna de México. *Acta Zoológica Mexicana* (n.s.), 20: 115-144.

Frost, D. R., Grant, T., Faivovich, J. N., Bain, R. H., Haas, A., Haddad, C. F. B., De Sá, R. O., Channing, A., Wilkinson, M., Donnellan, S. C., Raxworthy, C. J., Campbell, J. A., Blotto, B. L., Moler, P., Drewes,

R. C., Nussbaum, R. A., Lynch, J. D., Green, D. M. and Wheeler, W. C (2006) The amphibian tree of life. *Bulletin of the American Museum of Natural History*, 297: 1-370.

García, A., and Ceballos, G (1994) Field guide of reptiles and amphibians off the coast of Jalisco, Mexico. Ecological Foundation of Cuixmala - Institute of Biology, UNAM, Mexico, D.F.

García, E - Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (1998) Climas (Classification of Köppen, modified by García). Scale 1: 10,000,000. Mexico City, Mexico.

Gehrt, D. S. and Chelvig, J. E. (2003) Bat activity in an urban landscape: Patterns in the landscape and microhabitat scale. *Ecological Applications* 13: 939-950.

Gilman, S. E., Wethey, D. S. and Helmuth, B. (2006) Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales. *Proc. Natl Acad. Sci.* 103, 9560-9565.

González-Pérez, G., Briones-Salas, M., Alfaro, A.M. (2004) Integration of faunistic knowledge of the state. In: GarcíaMendoza, Ordóñez A. J., M. J., Briones-Salas, M. (eds.). *Biodiversity of Oaxaca*, pp. 449-466. National Autonomous University of Mexico, Oaxacan Fund for the Conservation of Nature and WWF, Mexico City, Mexico.

Gotelli, N. J., and Colwell, R. K. (2001) Quantifying biodiversity: procedures and pitfalls in measurement and comparison of species richness. *Ecol. Lett.* 4 : 379-391.

Gregory, R. D., Gibbons, D. W., and Donald, P. F. (2004) Bird census and survey techniques. In W. J. Sutherland, I. Newton, and R. E. Green (Eds.), *Bird Ecology and Conservation; a Handbook of Techniques* (1st ed., pp. 17-56). Oxford: Oxford University Press.

Guerrero, S., M. R. Sandoval and S. S. Zalapa. (2000) Determinación de la Dieta del Mapache (*Procyon lotor* Haernandezii Wagler, 1831) en la costa de Jalisco, México. *Acta Zool. Mex. (n.s.)* 80: 211-221.

Howell, S., and Webb, S. (1995) *A Guide to the Birds of Mexico and Northern Central America*. Oxford University Press.

Hughes, L. (2000) Biological consequences of global warming: is the signal already apparent? *Trends Ecol. Evol* 15: 56-61.

INEGI (Instituto Nacional de Estadística y Geografía). 2014. Censo nacional de población y vivienda (2010) Instituto Nacional de Estadística y Geografía, México. Retrieved from <http://www.censo2010.org.mx/>

IUCN (International Union for Conservation of Nature). (2017) The IUCN Red List of Threatened Species. Version 2012. Recurso electrónico: <http://www.iucnredlist.org/>

Jiménez-Valverde, A., and Hortal, J. (2003) The accumulation curves of species and the need to evaluate the quality of biological inventories. *Journal of Arachnology*, 8: 151-161.

Jones, K. B. (1986) Distributions and habitat associations of herpetofauna in Arizona: comparisons by habitat type. *Management of Amphibians, Reptiles and Small Mammals in North America Symposium*. Flagstaff, Arizona, USA.

Karns, D.R. (1986) Field herpetology: methods for the study of amphibians and reptiles in Minnesota. University of Minnesota, Minneapolis, MN, USA. Bell Museum of Natural History Occasional Paper #18.

Köhler, G. (2003) *Reptiles of Central America*. Herpeton. Verlag Elke Köhler. Germany.

Köhler, G. (2011) *Amphibians of Central America*. Herpeton. Verlag Elke Köhler. Germany.

Kindt, R. and Coe, R. (2005) *Tree diversity analysis: A manual and software for common statistical methods for ecological and biodiversity studies*. World Agroforestry Centre, Nairobi, Kenya.

Lee, J. C. (2000) *A field Guide to the Amphibians and Reptiles of the Maya World: The lowlands of México, Northern Guatemala, and Belice*. Comstock Publishing Associates a Division of Cornell University Press, USA.

Leopold, A. S. (1977) *Wildlife of Mexico*. Mexican Institute of Renewable Natural Resources. Pax-Mexico, Mexico. 608.

López, J.A., Lorenzo, C., Barragan, F., and Bolaños, J. (2009). Terrestrial mammals of the lagoon area of the Isthmus of Tehuantepec, Oaxaca, Mexico. *Mexican Revista Mexicana de Biodiversidad*, 491-505.

Lorenzo, C., T. Rioja, A. Carrillo-Reyes and F. A. Cervantes. (2008) Population fluctuations of *Lepus flavigularis* (Lagomorpha:Leporidae) at Tehuantepec isthmus, Oaxaca, Mexico. *Acta Zoológica Mexicana (n.s.)* 24(1): 207-220.

Lorenzo, C., Rioja-Paradela, T. M. and Carrillo-Reyes, A. (2015) State of knowledge and conservation of endangered and critically endangered lagomorphs worldwide. *Therya*, 6 (1): 11-30.

Luna-Casanova, A., Rioja-Paradela, T., Scott-Morales, L., Carrillo-Reyes, A., (2016) Endangered jackrabbit *Lepus flavigularis* prefers to establish its feeding and resting sites on pasture with cattle presence. *Therya* 7, 277-284.

Manson, R. H., and Jardel-Peláez, E. J. (2009) *Natural Disruption and Disasters: Impacts on Ecoregions, Biodiversity and Socioeconomic Well-being, in Natural Capital of Mexico, Vol. II: State of conservation and trends of change*. Conabio, Mexico, pp. 131-184.

Martín-Regalado, C. N., Gómez-Ugalde, R. M., and Cisneros-Palacios, M. E. (2011). Herpetofauna of

Cerro Guiengola, Isthmus of Tehuantepec, Oaxaca. *Acta Zoológica Mexicana* (n.), 27 (2): 359-376.

McCarty, J. P. (2001) Ecological consequences of recent climate change. *Conservation Biology* 15: 320-331.

Medellín, R. A. (1993.) Structure and diversity of a community of bats in the Mexican humid tropics. In Medellín R. A. and Ceballos, G. (Eds.) *Advances in the study of mammals in Mexico*, pp. 333-354. Mexican Association of Mastozoology, Special Publications, Mexico.

Medellín, R. H. Arita and O. Sánchez-Hernández. (1997) Identificación de los Murciélagos de México: claves de campo. Publicaciones Especiales # 2. Asociación Mexicana de Mastozoología A. C. México.

Medina-Rangel, G. F. (2011) Alpha and beta diversity of the reptile community in the muddy complex of Zapatosa, Colombia. *Rev. Biol Trop. (Int J Trop Biol)* Vol 59 (2): 935-968.

Miller, D. L. (2016) Distance: Distance Sampling Detection Function and Abundance Estimation. R package version 0.9.6. Retrieved from <https://CRAN.R-project.org/package=Distance>.

Moreno, C. E. (2001) Methods for measuring biodiversity. M & T-Manuals and Thesis SEA, vol. 1. Zaragoza, 84.

Muñoz-Alonso, L.A. (2012) Herpetofauna de la región del Mar Muerto, Oaxaca-Chiapas. SNIB-CONABIO. México, D.F.

Naranjo, E., and Bolaños, J. (2003) Correlation of abundance indices and population densities of mammals in the Lacandon forest, Mexico. Rocio Polanco publisher. In: Selection of papers V International Congress of Wildlife in Amazonia and Latin America.

Navarro-Sigüenza, A. G., Rebón-Gallardo, M. F., Gordillo-Martínez, A., Townsend-Peterson, A., Berlanga-García, H., and Sánchez-González, L. A. (2014) Biodiversity of birds in Mexico. *Revista Mexicana de Biodiversidad, Supl.* 85: S476-S495.

Oksanen, J., Blanchet, FG, Kindt, R., Legendre, P., Minchin, PR, O'Hara, RB, Simpson, GL, Solymos, P., Henry, M., Stevens, H. and Wagner, H. (2017) vegan: Community Ecology Package. Electronic resource: <http://R-Forge.R-project.org>

Orozco-Segovia, A. and Vázquez-Yanes, C. (1982) Plants and fruit bats interactions in a tropical rain forest area in southeastern Mexico. *Brenesia* 19/20: 137-150.

Pacheco, J., Ceballos, G., Daily, GC, Ehrlich, P. R, Suzán, G., Rodríguez-Herrera, B. and Marcé, E. (2006) Diversity, natural history and conservation of the mammals of San Vito de Coto Brus, Costa Rica. *Rev. biol. Trop* vol.54 (1): 219-240. San José Mar.

Pérez-García, E. A., Meave, J. A., and Gallardo, C. (2001) Vegetación y flora de la región de Nizanda, istmo de Tehuantepec, Oaxaca, México. *Acta Botánica Mexicana*, 56: 19-88.

Peterson, T. and Chalif, R. (1989) *Aves de México: Guía de Campo*. México: Diana.

Pineda-López, R., and Verdú-Faraco, J. R. (2013) Practice notebook. Measurement of biodiversity: alpha, beta and gamma diversities. 1st edition. University Editorial. Autonomous University of Queretaro. 14.

Powell, R., Collins, J. T. & Hooper Jr., E. D. (1998) *A Key to Amphibians and Reptiles of the Continental United States and Canada*. University Press of Kansas, Lawrence, USA.

R Core Team. (2016) R: A Language and Environment for Statistical Computing (Versión 3.2.3). Vienna, Austria: R Foundation for Statistical Computing. Retrieved from <http://www.R-project.org/>

Reid, F.A. (2009) A field guide to the mammals of Central America and Southeast Mexico. Oxford University Press: USA.

Rico, Y., Lorenzo, C., González-Cózatl, F., and Espinoza, E. (2007) Phylogeography and population structure of the endangered Tehuantepec jackrabbit (*Lepus flavigularis*): implications for conservation. *Conservation Genetics*, 9: 1467-1477.

Rioja, T. C. Lorenzo, E. Naranjo, L. Scott and A. Carrillo-Reyes. 2008. Polygynous mating behaviour in the endangered Tehuantepec jackrabbit (*Lepus flavigularis*). *Western North American Naturalist* 68(3): 343-349.

Rioja T., Carrillo-Reyes, A., y Lorenzo, C. (2012) Análisis de población viable para determinar el riesgo de extinción de la liebre de Tehuantepec (*Lepus flavigularis*) en Santa María del Mar, Oaxaca. *Therya* 3:137-150.

Rioja T., Lorenzo, C, E. Naranjo, L. Scott, and A. Carrillo-Reyes. (2011) Breeding and parental care in the endangered Tehuantepec jackrabbit (*Lepus flavigularis*). *Western North American Naturalist* 71:56-66.

Rioja-Paradela, T., Carrillo-Reyes, A., Castañeda, G., and López, S. (2013) Diversity herpetofaunística to the north of the lower lagoon, Isthmus of Tehuantepec, Oaxaca, Mexico. *Acta Zoológica Mexicana*, 574-595.

Rioja, T. and A. Carrillo-Reyes. (2014) Desarticulación entre políticas públicas para la conservación de la vida silvestre y la mitigación de la pobreza: el caso de la liebre de Tehuantepec (*Lepus flavigularis*) y pueblos indígenas del sureste de Oaxaca, México. Pp.175-204 in Gestión territorial y manejo de recursos naturales: fauna silvestre y sistemas agropecuarios (Medina-Sanson, L., C. Tejeda-Cruz, A. Carrillo-Reyes, T. M. Rioja-Paradela, eds.). Universidad Autónoma de Chiapas. Tuxtla Gutierrez, México.

Rioja-Paradela, T., L.F. Hernández, A. Carrillo-Reyes, G. Castañeda, C. Lorenzo and M. Gómez-Sánchez. (2016) Seasonal trophic interactions between an endangered mammal and cattle: Implications for

management practices. *Journal of Arid Environments*. In press.

Rzedowski, J. (2006) Vegetación de México. México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Retrieved from http://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMx_Cont.pdf

Rioja Rioja, E. C., A. González-Romero, C. Lorenzo, S. Gallina-Tessaro, and F. C. Cervantes. (2012) Uso y selección de asociaciones vegetales por la liebre de Tehuantepec (*Lepus flavigularis*) en Oaxaca, México. *Therya* 3:127-136.

Saldaña-Vázquez, R. A. (2010) Abundance responses of frugivorous bats (Stenodermatinae) to coffee cultivation and selective logging practices in mountainous central Veracruz, Mexico. *Biodiversity Conservation*, 19:2111-2124

Santizo, A.N. (2016) Diversidad de fauna acompañante de la liebre de Tehuantepec (*Lepus flavigularis*) en el sur de Oaxaca. Tesis para obtener el grado de Licenciatura en Biología. Universidad de Ciencias y Artes de Chiapas.

Santos-Moreno. (2014) Los mamíferos de Oaxaca. *Revista Mexicana de Mastozoología (Nueva Época)*, 4(2): 18-32

SEMARNAT. (2010) Mexican Official Standard 059. Environmental protection-Mexican native species of wild flora and fauna-risk categories and specifications for inclusion, exclusion or change-list of species at risk. Official Gazette of the Federation, Mexico.

Sibley, D. (2000) The Sibley guide to birds. New York: Alfred A. Knopf.

Soberón, J. M., and Llorente, J. (1993) The use of species accumulation functions for the prediction of species richness. *Conserv. Biol.*, 7: 480-488.

Smith, E. P., and Van-Belle, G. (1984) Nonparametric estimation of species richness. *Biometrics* 40, 119-129.

Sutherland, W. J. (2006) Ecological census techniques a handbook. Cambridge, UK: Cambridge University Press.

Vavrek, M. J. (2011) Fossil: palaeoecological and palaeogeographical analysis tools. *Palaeontologia Electronica*, 14, 1T. Retrieved from <http://palaeo-electronica.org>

Vitt, L. J., Zani, P.A., et al. Caldwell, J.P., De Araújo, M.C. and Magnusson, W.E. (1997) Ecology of whiptail lizards (*Cnemidophorus*) in the Amazon region of Brazil. *Copeia* 1997: 745-757.

Vitt, L. J., and Pianka, E. R. (2004) Historical Patterns in Lizard Ecology: What Teiids Can Tell Us About Lacertids, p.139-157. In V. Pérez-Mellado, N. Riera and A. Perera (eds.). *The Biology of lacertid lizards: Evolutionary and ecological perspectives*. Institut Menorquí d'Estudis. Recerca 8, Minorca, Spain.

Walther, G. R., Post, E., and Convey, P. (2002) Ecological responses to recent climate change. *Nature* 416: 389 - 395.