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ABSTRACT

It has been demonstrated that conducting a landscape analysis using a
single landscape metric yields data of limited predictive value. Therefore, a
combination of selected metrics is more desirable. However, universal set of
landscape variables that can effectively evaluate the quality of a particular
landscape fragment does not exist. This study considered 14 patch-level
landscape metrics and evaluated the best suited to estimate the quality
of grasslands in an area of the Northern Chihuahuan Desert ecoregion. A
principal component analysis was used to select the combination of metrics,
while the multi-objective optimization on the basis of ratio analysis (MOORA)
method was used to integrate these variables in addition to rank their quality
as predictors. This study proposes that Area, Euclidean distance, Proximity
index and Similarity index as the best landscape metrics when characterizing
the quality of Chihuahuan Desert grasslands.

RESUMEN

Los analisis que utilizan una sola métrica de paisaje poseen un valor predictivo
limitado para la toma de decisiones en el manejo de los ecosistemas, por lo que
es deseable seleccionar multiples indicadores simultdneamente. Sin embargo,
actualmente no existe un conjunto universal de variables que puedan evaluar
efectivamente la calidad de un fragmento dentro de un paisaje determinado.
El presente estudio considera 14 métricas con el fin de evaluar cudles son las
mejores para describir la calidad de fragmentos de pastizal natural dentro de
la ecoregion del Desierto Chihuahuense. La seleccion de la combinacion de
variables se realizo a través de un analisis de componentes principales, mientras
que el método de optimizacion multi-objetivo basado en el analisis de radios
(MOORA) fue utilizado para la integracion de las variables seleccionadas al
mismo tiempo de ponderar la influencia de cada variable. En este estudio se
concluye que el area, la distancia euclidiana, el indice de proximidad y el indice
de similitud son las métricas de paisaje que mejor caracterizan la calidad de los
pastizales en el Desierto Chihuahuense.
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Assessing the quality of Chihuahuan Desert grasslands

INTRODUCTION

Human-dominated landscapes are actually
increasing their presence throughout the planet (Foley
et al., 2005; Haila, 2002; Lepczyk et al., 2008). Human
induced changes in landscape structure are transforming
extensive natural areas into habitat patches that are
often surrounded by developed land. This type of
disturbance is potentially hostile to biodiversity and
their processes (Mossman et al., 2015). Although the
overall landscape quality has an important influence
on wildlife populations, patch attributes determine the
distribution of quality among habitat patches giving
rise to source-sink dynamics (Heinrichs et al., 2015).
If the premise of habitat degradation is listed as the
main cause of wildlife population declining, patch-
level assessment plans for wildlife management and
conservation are needed. Mortelliti et al. (2012) showed
that the omission of patch quality in a fragmentation
analysis could carry substantial risk in conservation
of landscapes where significant variation across the
patches exists.

Landscape structure refers to the patterns found within
its elements, which are defined as discrete entities or
patches (Kupfer, 2012; Tscharntke et al., 2012; Uuemaa
et al., 2013). Quantifying landscape structure can be
assessed under two approaches: the species-oriented
and the pattern-oriented (Fischer and Lindenmayer,
2007). Pattern-oriented approach originated from the
island biogeography theory (MacArthur and Wilson,
1967) is the strongest hold on landscape ecology
research (Fischer and Lindenmayer, 2007; Haila, 2002).

The patch matrix model (PMM) describes landscape
structure as a mosaic of homogeneous areas discretely
delineated, with three principal elements, i.e., patches,
corridor and matrix (Forman and Gordon, 1986;
Forman, 1995). This model can be addressed through
landscape composition, which represents the proportion
of fragment types and landscape configuration that
describes the spatial aspects of the patch mosaic (e.g.
size, shape and arrangement). Although the PMM has
been heavily criticized due to the oversimplification of
the landscape features, Lausch et al. (2015) suggested
that this approach should be used in landscapes under
severe pressure (e.g. urban and agricultural areas)
because they tend to fix vegetation patterns, creating
landscapes dominated by homogeneous areas with
very distinct boundaries. PMM has been the prevailing
model used due to its simplicity, compatibility with
data models in geographic information systems, and
the availability of remotely sensed data (Fischer and
Lindenmayer, 2007).

Landscape metrics characterize quantitatively the
landscape structure based on maps or remotely sensed
images (Kupfer, 2012; Simova and Gdulova, 2012;
Uuemaa et al., 2009). Several dozens of landscape
metrics have been proposed to describe landscape
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structure creating an enormous confusion to which
metrics are appropriate in effectively characterizing
relevant landscape components (Fan and Myint, 2014;
McGarigal, 2015; Schindler et al., 2014; Simova and
Gdulova, 2012). To avoid including a large list of
redundant variables a pre-selection of metrics is often
required. This selection can be based on theoretical
consideration, expert knowledge, previously published
studies and statistical approaches (Riitters et al.,
1995; Schindler et al., 2014). However, there are no
universally appropriate indicator variables, because
their performance depends mainly on each landscape
context (Schindler et al., 2014; Walz, 2011). In the
absence of prior knowledge for a specific study system,
a pre-selection of landscape metrics is a challenging
task for conservationists and policy-makers interested
in identifying appropriate indicators (Walz, 2011).

Environmental decision-making process is often
complex because it relies on experimental results or
computational models that assess human health and
ecological risk associated with environmental stressors.
The interpretation of these results is extremely difficult
because there are many emerging risks for which
information is not available and decisions should be
made under significant uncertainty. Multi-criteria
decision analyses (MCDA) constitutes a set of useful
tools for decision-making problems in environmental
sciences because it allows the combination of a set of
weighted variables to rank the different alternatives
under consideration. The use of MCDA as a tool to
support decision-making in environmental research
has increased mainly due to the recognition of the
complexity of environmental problems and the need for
transparency from stakeholders throughout the process.
When selecting a particular MCDA approach, it is
important to consider the complexity of the decision in
terms of scientific, social and technical factors as well
as understanding the processes needs and the level of
available knowledge about the problem (Huang et al.,
2011).

The multi-objective optimization, also known as multi-
criteria or multi-attribute optimization (MOORA),
is a process of simultaneously optimizing two or
more conflicting attributes (objectives) subject to
certain constraints (Chakraborty, 2011; Gadakh, 2011;
Karande and Chakraborty, 2012). This method was
first introduced like a multi-objective optimization
technique that can be successfully applied to solve
various types of complex decision making problems
(Brauers et al., 2008; Brauers and Zavadskas, 2006;
Karande and Chakraborty, 2012). Thus the aim of
this study is identify the set of landscape metrics that
best characterize the quality of grassland patches in
the Northern Chihuahuan Desert ecoregion trough
MOORA approach.
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Assessing the quality of Chihuahuan Desert grasslands

MATERIALS AND METHODS

Study area.- The Chihuahuan Desert encompasses one
of the most biologically diverse arid regions on earth.
It covers nearly 630 000 km?, covering from eastern
Arizona, southern New Mexico, and western Texas,
USA to the edge on Mexico’s Meseta Central (Figure
1). Most of the ecoregion lies between 900 and 1500
m.a.s.l., although foothill areas and some isolated
mountains in Meseta Central may rise more than
3000 m.a.s.l. (Dinerstein et al., 2000). The climate is
relatively uniform with hot summers and cool to cold,
dry winters; precipitation is monsoonal during the
summer months ranging from 150 to 500 mm annually
(Schmidt, 1986).
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Figure 1. Location of the Chihuahuan desert grasslands

The Chihuahuan Desert is composed mainly of two
types of vegetation. One dominated by shrubs, which
currently covers more than 85% of its surface and the
other dominated by grasses, which covers less than
15% (PMARP, 2012). Chihuahuan desert grasslands
were formerly characterized by extensive areas of
tobosagrass (Pleuraphis mutica) and black gramma
(Bouteloua eriopoda). However, grassland areas
across this ecoregion are undergoing a large-scale
transformation mainly due to expanding agriculture,
urbanization, energy development, desertification (Pool
et al., 2014) and shrub invasion attributed to climate
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change, over grazing, fire suppression, distribution of
shrub seeds by domestic livestock and the removal
of native herbivores (Desmond and Montoya, 2006;
Manzano-Fischer et al., 2006).

Data sources and processing.- The data used in this
study consists of two categorical maps and one raster.
The first categorical map was the 1:50,000 Land Use
and Vegetation of the state of Chihuahua, Mexico
(CONAFOR, 2013). The second categorical map was
the 1:250,000 Land Use and Vegetation covered by the
rest of the Mexican states within the Chihuahuan Desert
(INEGI, 2015). The raster was the land cover of North
America at a scale of 1:10,000,000 with a resolution of
250 meters (CEC, 2013). Of the resulting map, patches
classified as natural grassland were identified and
together with their neighbors polygons were selected
to create a raster file with a resolution of 200 meters in
ArcGIS 10.0.

Landscape structure analysis.- This study computed
14 metrics at patch level, available in FRAGSTATS
software package (McGarigal et al., 2002) as follows:
area (AREA), perimeter (PERIM), radius of gyration
(GYRATE), perimeter-area ratio (PARA), shape index
(SHAPE), fractal dimension index (FRAC), related
circumscribing circle (CIRCLE), contiguity index
(CONTIG), core area (CORE), number of core areas
(NCA), core area index (CAI) Euclidean nearest
neighbor distance (ENN), proximity index (PROX) and
similarity index (SIMI) (Table 1).

Multi-objective optimization on the basis of ratio
analysis (MOORA) method.- The MOORA method
(Brauers and Zavadskas, 2006) starts with a decision
matrix showing the response of different alternatives
with respect to various objectives (attributes):

(xij) (D)

Where xij is the response of alternative j to objective
i, 10 1,2,..., n are the objectives, j= 1,2,... m are the
alternatives.

The MOORA method is based on a ratio system in
which the response of each alternative is compared
to a denominator which is representative for all
the alternatives concerning that objective. For this
denominator the square root of the sum of squares of
each alternative per objective is chosen. This ratio can
be expressed as:

Nx__ Xij

o= (2)
NP
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Where x; = response of alternative j to objective 7, j =
1, 2,..., m; m the number of alternatives, i =1, 2...., n;
n being the number of objectives,

Nx; = a dimensionless number representing the
normalized response of alternative j to objective i
these normalized responses of the alternatives to the
objectives belong to the interval [0;1].

For the multi-objective optimization, these normalized
responses of each alternative are added in case of
maximization (beneficial attributes) and subtracted

in case of minimization (non beneficial attributes) as
Ouﬂinpﬂ helawre

i=n
1=g+1 NXi;

3)

with:

i=1,2,..., g for the objectives to be maximized, i =g +
1, g+ 2,..., n for the objectives to be minimized,

Ny; = the normalized assessment of alternative j with
respect to all objectives.

In this formula linearity concerns dimensionless
measure in the interval [0;1]. An ordinal ranking of the
shows the final preference.
In some cases, it is observed that some objectives are
more important than others. In order to give more
importance to an attribute, it could be multiplied by its
corresponding weight.
1=g+1 WINXj (j=12,.n)

4)

Ny; = ¥.-I WjNx;; —

Where Wj=the weight of jth attribute

The Ny, value can be positive or negative depending of
the totals of its maximized (beneficial attributes) and
minimized (non-beneficial attributes) in the decision
matrix. An ordinal ranking of Ny, shows the final
preference. Thus, the best alternative has the highest
Ny, value, while the worst alternative has the lowest
Ny, value.

Statistical analysis.- To select the landscape structure
variables that were used to build the different MOORA
combinations, a principal component analysis (PCA)
was used, which was performed in SPSS (IBM SPSS,
2013). Pearson correlation analysis allowed detecting
redundancy between landscape metrics that helped
establishing the number of MOORA and their variable
combinations. Eigenvalues of the PCA were used to
weight each landscape metric in every MOORA set.
The similarity of the results of each MOORA set was
evaluated with a dendrogram built with the Euclidean
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distances using SPSS (IBM SPSS, 2013). The first
dendrogram was created using the 30 best patches
selected by each MOORA set. The second one was the
result of using the 30 worst patches selected by each
MOORA set. To evaluate the precision of the quality
established by each MOORA set a Kappa analysis
was conducted, which provides a quantitative measure
of agreement between categorical variables. Kappa
is calculated from the difference between how much
agreement is actually present (observed agreement)
compared to how much agreement would be expected
to be present by chance alone (expected agreement)
(Viera and Garrett, 2005). Kappa value is standardized
to lieon a -1 to 1 scale, where 1 is perfect agreement, 0
is exactly what would be expected by chance. Negative
values indicate agreement less than chance.

RESULTS

A total of 22,045 patches of natural grassland were
identified in the Chihuahuan Desert Ecoregion. The
14 landscape metrics calculated to assess the quality
of each of these fragments are summarized in Table
2. In order to select the variables that constitute each
MOORA set a PCA analysis was conducted. Cross-
correlation between variables showed a variety of
complex relationships (Table 3). AREA-CORE was
completely redundant, while AREA-PERIM, AREA-
NCORE, PERIM-CORE, and GYRATE-NCORE were
strongly correlated in a positive way. While PARA-
CONTIG showed a strong and positive correlation,
PROX, SIMI, and ENN did not correlate with other
metrics.

Nine MOORA sets were built based on the performance
of landscape metrics of Chihuahuan Desert grasslands
through a PCA and literature review where theoretical
relations were established between variables (Table 4).
Using the 30 best and 30 worst quality patches with
each MOORA combination, it was determined that sets
5,7, 8 and 9 were most similar when selecting the best
grassland patches (Figure 2).

While the MOORA combinations 2, 6, 7, 8 and 9 were
similar in the selection of the worst grassland patches
(Figure 3). MOORA sets 7, 8 and 9 are consistent
in discriminating between patches that have good
landscape features and those who do not have them.

The level of agreement between all possible pairs of
MOORA set combinations, using the Kappa statistic
value showed that 5.55% of them had an almost perfect
agreement, 8.3% had a substantial agreement, 16.66%
had amoderate agreement, 47.22% had a fair agreement,
while 22.22% had a slight agreement (Table 5).

o



Assessing the quality of Chihuahuan Desert grasslands

Euclideandistance

S 10 15 X 35
| 1 1 Il Il

MOORA2

Figure 2. Euclidean distance dendogram of the 30 best
grassland fragments selected by each MOORA combination
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Figure 3. Euclidean distance dendogram of the 30 worst
grassland fragments selected by each MOORA combination

DISCUSSION

The values of the landscape metrics estimated for
the 22,045 grassland patches confirmed the high
fragmentation of the Chihuahuan Desert grasslands
described in many studies (Curtin et al., 2002; Manzano-
Fischer and Cruzado, 2010; Manzano-Fischer et al.,
2006; Pidgeonetal.,2001; Pool etal.,2014). The AREA,
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PERIM, and GYRATE metrics reveled that the extent
of grassland patches is highly variable. The SHAPE,
FRAC, and CIRCLE metrics showed that despite the
extent of the patch, most grassland patches tend to have
simple perimeters with very little convolutions. The
CONTIG metric indicates that the spatial connectedness
of most grassland patches is limited and the PROX,
SIMI, and ENN metrics showed that the aggregation
of grassland patches is highly variable throughout the
ecoregion. The ambiguity about how far the edge effect
influences the patches is a species specific attribute
(Helzer and Jelinski, 1999). Therefore, the use of
CORE, NCORE and CAI metrics seems not appropriate
for general fragmentation models.

The redundancy found between AREA with CORE,
PERIM, NCORE, and GYRATE was consistent with
previous studies (Szab6 et al., 2014). This is mainly
because these metrics represent patch extent and
therefore polygon area has a very strong influence on
their formulation. The strong and positive correlation
found between PARA and CONTIG is because both
metrics incorporate the extent and shape to address
patch complexity (Helzer and Jelinski, 1999). However,
Szabd et al. (2014) found a strong negative correlation
between these metrics. PROX, SIMI, and ENN did not
correlate with other metrics. Consequently, they can
be regarded as the ones providing unique information
when selecting indices to characterize a particular
fragment. Szab¢ et al. (2014) found that the only non-
correlated metrics were PROX and ENN.

It has been established that landscape metrics are very
difficult to interpret and associate to ecological patterns
and processes (Cushman et al, 2008). Therefore,
we thoroughly analyzed each landscape metric both
theoretically and empirically to establish the MOORA
decision for maximizing (positive influence) or
minimizing (negative influence). The MOORA method
was chosen to integrate the landscape metrics and build
the fragmentation model, because we considered that it
is the most robust of all the multi-objective optimization
techniques. This method is the only one that fulfills the
seven conditions of robustness used to evaluate the
performance of MCDA. It includes all stakeholders,
evaluation objectives, response alternatives, it is based
on cardinal numbers, it uses only non-subjective
estimators, it uses the latest information available,
and it uses two different methods of multi objective
optimization (the ratio system and the reference point
approach) (Brauers and Zavadskas, 2009, 2012).

In addition to the mathematical robustness, the operation
of this method is very simple. Chakraborty (2011)
compared the MOORA to other multi-objective methods
(AHP, TOPSIS, ELECTRE, VIKOR, PROMETHEE,
and GRA) and demonstrated that the MOORA method
besides being mathematically robust, is very simple to
comprehend and easy to implement because it involves
the least amount of mathematical calculations and
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minimal computational skills are required. Therefore,
the MOORA method is highly recommended to assist
during any complex decision-making process, such as
the determination of the quality of grassland patches of
the Chihuahua Desert.

Landscape metric combination established in MOORA
7, MOORA 8, and MOORA 9 were consistent in
selecting the same patches of good quality and poor
quality. The four metrics used in MOORA 7 (AREA,
ENN, PROX and SIMI) were the least correlated
between themselves. While the MOORA 8 uses the
AREA and PERIM which are highly correlated. The
effect of the PERIM was absorbed by the AREA
because it was minimized. Therefore, AREA, ENN,
PROX and SIMI were again the important indicators.
Finally, in MOORA 9, PARA was used instead of AREA
and/or PERIM. PARA equals to the ratio of the patch
perimeter to its area and it has been established that
PARA is strongly influenced by patch area (McGarigal
et al., 2002).

The KAPPA value showed that MOORA 7 and
MOORA 8 had an almost perfect agreement when
assigning patch quality. Cushman et al. (2008) noted
that it is desirable that a smaller number of independent
variables be included when describing landscape
structure (Cushman et al., 2008). Therefore, we
propose that MOORA 7 (AREA, ENN, PROX and
SIMI) includes the patch metrics that best describe the
grassland patches of the Chihuahuan Desert Ecoregion.

CONCLUSIONS

The wvalues of the patch metrics confirmed the
intense fragmentation that they are undergoing of the
Chihuahuan Desert landscape and demonstrate that
grasslands ecosystem are in a state of vulnerability. The
enormous structural variation of grassland patches (e.g.
area, shape and isolation) within the ecoregion and the
redundancy of this fragmentation indices make difficult
to identify which attributes were the best descriptors to
identify grasslands remnants that have a higher quality
and thus can be selected as priorities for conservation.
The MCDA MOORA method used in this study proved
to be simple, easy to understand, and mathematically
robust to discriminate different sets of landscape
metrics. This tool allows to simultaneously considering
any number of attributes with their relative importance
and offering a more objective and logical attribute
selection approach.

Finally, it is possible to conclude that the best set of
landscape metrics to describe the quality of Chihuahuan
Desert Grassland patches includes the area, Euclidean
nearest-neighbor distance, and proximity and similarity
coefficients.
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Table I. Description of patch-base metrics for the raster image integrated with grassland patch of the Chihuahuan Desert calculated in FRAGSTAT
4.1 Software package (Mcgarigal, 2015).

Indicator ~ Description Units Range
Equals the area (m?) of the patch, divided by
AREA 10 000. The area of each patch comprising a landscape mosaic is perhaps the single Hectares AREA > 0, without limit
most important and useful piece of information contained in the landscape.
Equals the perimeter (m) of the patch, including any internal holes in the patch.
PERIM The perimeter of a patch is treated as an edge, and the intensity and distribution of Meters ~ PERIM > 0, without limit
edges constitutes a major aspect of landscape pattern
Equals the mean distance (m) between each cell in the patch and the patch . L
GYRATE ceqntroid. Radius of gyrati(gn i)s a measure of patch exterrl)t P Meters  Gyrate > 0, without limit
Equals the ratio of the patch perimeter (m) to area (m?). Perimeter-area ratio is
PARA a simple measure of shape complexity, but without standardization to a simple None PARA > 0, without limit
Euclidean shape.
Equals patch perimeter (m) divided by the square root of patch area (m2), adjusted . o
by a constant to adjust for a square standard. Shape index corrects for the size Sgﬁgg E {’ Wﬁthotuht hm:th .
SHAPE problem of the perimeter-area ratio index by adjusting for a square standard and, None d _when the Ei ¢ tlls- a t
as a result, is the simplest and perhaps most straightforward measure of shape square and mcrease whitout tmit as
. patch shape becomes more irregular.
complexity.
Equals the logarithm of patch perimeter (m) divided by the logarithm of patch area
FRAC (m?); the perimeter is adjusted to correct for the raster bias in perimeter. Fractal None 1 <FRAC <2
dimension index is appealing because it reflects shape complexity across a range of - -
spatial scales.
0<CIRCLE< 1
CIRCLE Equals 1 minus patch area (m?) divided by the area (m?) of the smallest N CIRCLE = 0 for square patches and
A SR s : h . one :
circumscribing circle. This index is not influenced by patch size. approaches 1 for elongated, linear
patches one cell wide
Equals the average contiguity value for the cells in a patch minus 1, divided by OCéI\CI%IEI}TIG 51 10 f ixel
the sum of the template values minus 1. Contiguity index assesses the spatial equais U lora one-pixe
CONTIG D iy . . . None patch and increases to a limit of 1 as
connectedness, or contiguity of cells within a grid-cell patch to provide an index on h it ted
patch boundary configuration and thus patch shape patch congruity, or connectedness,
Iincreases.
CORE > 0, without limit
CORE = 0 when every location within
Equals the area (m2) within the patch that is further than the specified depth-of- fihe F}? tc? 13 w1(tih11t1 the StP emﬁ;}e}d
CORE edge distance from the patch perimeter, divided by 10,000. Core area index is a Hectares 2CPLI-0 edge distance from the
relative index that quantifies core area as a percentage of patch area patch perimeter. CORE approaches
AREA as the specified depth-of-edge
distance decreases and as patch shape
is simplified
CORE > 0, without limit
NCORE = 0 when CORE = 0 (every
Equals the number of disjunctive core areas contained within the patch boundary. location within the patch is within the
NCORE A disjunction core is a spatially contiguous (and therefore distinct) core area. None specified depth-of-edge distance from
Depending on the size and shapes of the patch and the specified depth-of-edge the patch perimeter)
distance(s), a single patch may actually contain several disjunctive core areas. NCORE > 1 when, because of shape,
the patch contains disjunctive core
areas
Equals the patch core area (m2) divided by total patch area (m2), multiplied by 100 0<CAI<100
CAI (to convert to a percentage); in other words, CAI equals the percentage of a patch Percent CAI approaches 100 when the patch,
that is core area. Core area index is a relative index that quantifies core area as a because of size, shape, and edge
percentage of patch area. width, conns mostly core area
Equals the distance (m) to the nearest neighboring patch of the same type, based . o
ENN on shorts edge-to-edge distance. Note that the edge to edge distances are from cell Meters EEII:II z O’rngfe“sn)l;?;ﬁe distance to
center to cell center. Euclidean nearest-neighbor distance is perhaps the simplest th PP :
; . : . e nearest neighbor decreases
measure of patch context and has been used extensively to quantify patch isolation.
PROX >0
PROX =) if a patch has no neighbors
Equals the sum of patch area (m2) divided by the nearest edge to edge distance of the same patch type within the
PROX squared (m2) between the patch and the focal patch of all patches of the None specified radius. PROX increases
corresponding patch type whose edges are within a specified distance (m) of the as the neighborhood is increasingly
focal patch. occupied by patches of the same type
and as this patches become closer and
more contiguous in distribution
SMI >0
SIMI = 0 if all the patches within
the specified neighborhood have a 0
Equals the sum, over all neighboring patches with edges within a specified distance similarity coefficient. SIMI increases
SIMI the focal patch type and the class of the neighboring patch (0-1), divided by None as the neighborhood is increasingly

the nearest edge-to edge distance squares (m?) between the focal patch and the
neighboring patch.

occupied by patches with greater
similarity coefficients and as this
similar patches become closer and
more contiguous and less fragmented
in distribution
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Table II. Descriptive statistics of the metric landscape of the natural grassland found in the Chihuahuan Desert Ecoregion

Mean Standard deviation Minimum Maximum
AREA 671.45 71258.15 4 10572632
PERIM 11264.32 564066.34 800 83099600
GYRATE 334.59 1319.42 100 163609.98
PARA 133.73 49.89 7.53 200
SHAPE 1.4 0.97 1 63.88
FRAC 1.04 0.04 1 1.33
CIRCLE 0.47 0.27 0 0.96
CONTIG 0.29 0.23 0 0.95
CORE 530.25 63135.48 0 9370160
NCORE 0.69 13.52 0 1877
CAI 5.75 13.12 0 89.21
PROX 6433.59 60423.26 0 660828.25
SIMI 2434274.45 2846722.82 0 13113770.11
ENN 834.58 1832.57 400 117459.95

Table I1I. The Pearson correlation matrix between the 14 landscape variables calculated for the Chihuahuan Desert grasslands

AREA PERIM GYRATE PARA

SHAPE

FRAC CIRCLE CONTIG

CORE NCORE CAI

PROX  SIMI ENN

AREA

PERIM

GYRATE

PARA

SHAPE

FRAC

CIRCLE

CONTIG

CORE

NCORE

CAIL

PROX

SIMI

ENN

0.996

p=0.000 p=0.000

*

p=0.000

022 0453 0050  0.007
p=0.001 p=0.000 p=0.000 p=0.296
0.036 0508 0.076  0.015
p=0.000 p=0.000 p=0.000
0247 0791 0350  0.153
p=0.000 p=0.000 p=0.000 p=0.000

p=0.22

. 0.404 -0.603  0.694
p=0.000 p=0.000 p=0.000

. 0.731  0.355
p=0.000 p=0.000

. 0.721

p=0.000

*

0.025
p=0.000
0.040
p=0.000
0.269
p=0.000
0.987
p=0.000
0.449
p=0.000
0.668
p=0.000
0.688
p=0.000

*

1 0.945  0.053
p=0.000 p=0.000 p=0.000
0995 0970 0.075
p=0.000 p=0.000 p=0.000
0.846 0926 0377
p=0.000 p=0.000 p=0.000

-0.021

-0.087

-0.682

p=0.002 p=0.000 p=0.000
0.447  0.646  0.499
p=0.000 p=0.000 p=0.000
0.047  0.155  0.517
p=0.000 p=0.000 p=0.000
0.006 0.044  0.287
p=0.361 p=0.000 p=0.000
0.023  0.09 0.738
p=0.001 p=0.000 p=0.000

0.942  0.050

p=0.000 p=0.000

*

0.146
p=0.000

*

&

-0.001  0.014  -0.001
0.923 p=0.042 0.836
-0.001  0.015 -0.001

p=0.885 p=0.026 p=0.824
0.002 0.063  0.028
p=0.821 p=0.000 p=0.000
0.063 0432  0.126
p=0.000 p=0.000 p=0.000
0.017 0070  0.004
p=0.014 p=0.000 p=0.577
0.017 0152  0.025
p=0.011 p=0.000 p=0.000
0.031 0247  0.057
p=0.000 p=0.000 p=0.000
0.056 0427  0.130
p=0.000 p=0.000 p=0.000

0.001 0.014 -0.001
p=0.926 p=0.044 p=0.835
0.001 0025 -0.001

p=0.848 p=0.000 p=0.905
0.017 0230 0.145
p=0.011 p=0.000 p=0.000
0.027  -0.024

p=0.000 p=0.000

0.109

p=0.000

*

*

*
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Table IV. Number of principal component of each set of landscape metrics with the weight and MOORA decision of each landscape

metric in all MOORA combinations

Eigenvalues of PCA Landscape metrics Weight MOORA Decision
AREA 7.35 Maximize
PERIM 7.35 Minimize
43.89 GYRATE 7.35 Maximize
SHAPE 7.35 Minimize
CORE 7.35 Maximize
NCORE 7.35 Minimize
MOORA 1 PARA 6.18 Minimize
FRACC 6.18 Minimize
30.91 CIRCLE 6.18 Minimize
CONTIG 6.18 Maximize
CAI 6.18 Maximize
8.68 ENN 8.68 Minimize
8.54 PROX 8.54 Maximize
7.97 SIMI 7.97 Maximize
1230 CONTIG 16.15 Max%m%ze
SIMI 16.15 Maximize
MOORA 2 23.55 PROX 23.55 Maximize
22.29 ENN 22.29 Minimize
21.87 GYRATE 21.87 Maximize
PARA 9.06 Minimize
SHAPE 9.06 Minimize
45.30 FRAC 9.06 Minimize
CIRCLE 9.06 Minimize
CONTIG 9.06 Maximize
MOORA 3 AREA 10.45 Maximize
31.36 PERIM 10.45 Minimize
GYRATE 10.45 Maximize
PROX 5.82 Maximize
11.65 ENN 5.82 Minimize
11.65 SIMI 11.65 Maximize
58.97 AREA 29.48 Maximize
’ SHAPE 29.48 Minimize
MOORA 4 41.02 SIMI 20.51 Ma.lx.im.ize
ENN 20.51 Minimize
41.84 AREA 20.92 Ma'lx.im.ize
SHAPE 20.92 Minimize
MOORA 5 29.27 ENN 29.27 Minimize
28,87 PROX 14.43 Max%m%ze
SIMI 14.43 Maximize
GYRATE 22.52 Maximize
45.04 SHAPE 22.52 Minimize
MOORA 6 27.65 ENN 27.65 Minimize
SIMI 13.64 Maximize
27.29 PROX 13.64 Maximize
24.73 AREA 24.73 Maximize
25.57 ENN 25.57 Minimize
MOORAT 25.97 PROX 25.97 Maximize
23.71 SIMI 23.71 Maximize
4873 AREA 24.36 Maximize
PERIM 24.36 Minimize
MOORA 8 25.79 ENN 25.79 Minimize
2547 PROX 12.73 Max%m%ze
SIMI 12.73 Maximize
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40.19 PARA 20.09 Minimize

’ SIMI 20.09 Maximize

MOORA9 30.80 PROX 30.80 Maximize
28.99 ENN 28.99 Minimize

Table V. Agreement analysis and correlation analysis between the different MOORA combinations. Above the diagonal is the
agreement Kappa value and below the diagonal is the Kappa value interpretation of the level of agreement

MOORA1 MOORA2 MOORA3 MOORA4 MOORAS5 MOORA6 MOORA7 MOORASZ MOORAOI

MOORA 1 * 0.2818 0.7973 0.1067 0.1315 0.2815 0.3939 0.3451 0.3790
p=0.00 p=0.00 p=0.11 p=0.05 p=0.00 p=0.00 p=0.00 p=0.00

. 0.1711 0.1335 0.1870 0.2188 0.2732 0.2199 0.5951

MOORA2 — Fair * p=0.00  p=0.06  p=0.00  p=0.00  p=0.00  p=0.00  p-0.00
. . 0.1797 0.2016 0.3250 0.4859 0.3639 0.4533
MOORA3  Substantial ~ Slight * p=0.00  p=0.00  p=000  p=0.00  p=0.00  p=0.000
. . . 0.8960 0.6632 0.2765 0.3905 0.1331

k

MOORA 4 Slight Slight Slight p=0.00 p=0.00 p—=0.00 p—0.00 p—=0.27
. . . Almost 0.7649 0.3473 0.4534 0.1828

MOORAS ~ Slight Slight Fair perfect * p=0.00  p=0.00  p=0.00  p=0.01
MOORA 6 Fair Fair Fair Substantial Substantial * 82402 ?)(1) 82502 8(9) 32206 88
MOORA 7 Fair Fair Moderate Fair Fair Moderate * 0;8 113 0;3 893
p=0.00 p=0.00

MOORA 8 Fair Fair Fair Fair Moderate ~ Moderate Almost * 0;2872
perfect p=0.00

MOORA 9 Fair Moderate  Moderate Slight Slight Fair Fair Fair *




