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ABSTRACT  

It has been demonstrated that conducting a landscape analysis using a 
single landscape metric yields data of limited predictive value. Therefore, a 
combination of selected metrics is more desirable. However, universal set of 
landscape variables that can effectively evaluate the quality of a particular 
landscape fragment does not exist. This study considered 14 patch-level 
landscape metrics and evaluated the best suited to estimate the quality 
of grasslands in an area of the Northern Chihuahuan Desert ecoregion. A 
principal component analysis was used to select the combination of metrics, 
while the multi-objective optimization on the basis of ratio analysis (MOORA) 
method was used to integrate these variables in addition to rank their quality 
as predictors. This study proposes that Area, Euclidean distance, Proximity 
index and Similarity index as the best landscape metrics when characterizing 
the quality of Chihuahuan Desert grasslands.

RESUMEN

Los análisis que utilizan una sola métrica de paisaje poseen un valor predictivo 
limitado para la toma de decisiones en el manejo de los ecosistemas, por lo que 
es deseable seleccionar múltiples indicadores simultáneamente. Sin embargo, 
actualmente no existe un conjunto universal de variables que puedan evaluar 
efectivamente la calidad de un fragmento dentro de un paisaje determinado. 
El presente estudio considera 14 métricas con el fin de evaluar cuáles son las 
mejores para describir la calidad de fragmentos de pastizal natural dentro de 
la ecoregión del Desierto Chihuahuense. La selección de la combinación de 
variables se realizó a través de un análisis de componentes principales, mientras 
que el método de optimización multi-objetivo basado en el análisis de radios 
(MOORA) fue utilizado para la integración de las variables seleccionadas al 
mismo tiempo de ponderar la influencia de cada variable. En este estudio se 
concluye que el área, la distancia euclidiana, el índice de proximidad y el índice 
de similitud son las métricas de paisaje que mejor caracterizan la calidad de los 
pastizales en el Desierto Chihuahuense.      
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INTRODUCTION 

	 Human-dominated landscapes are actually 
increasing their presence throughout the planet (Foley 
et al., 2005; Haila, 2002; Lepczyk et al., 2008). Human 
induced changes in landscape structure are transforming 
extensive natural areas into habitat patches that are 
often surrounded by developed land. This type of 
disturbance is potentially hostile to biodiversity and 
their processes (Mossman et al., 2015). Although the 
overall landscape quality has an important influence 
on wildlife populations, patch attributes determine the 
distribution of quality among habitat patches giving 
rise to source-sink dynamics (Heinrichs et al., 2015). 
If the premise of habitat degradation is listed as the 
main cause of wildlife population declining, patch-
level assessment plans for wildlife management and 
conservation are needed. Mortelliti et al. (2012) showed 
that the omission of patch quality in a fragmentation 
analysis could carry substantial risk in conservation 
of landscapes where significant variation across the 
patches exists.

Landscape structure refers to the patterns found within  
its elements, which are defined as discrete entities or 
patches (Kupfer, 2012; Tscharntke et al., 2012; Uuemaa 
et al., 2013). Quantifying landscape structure can be 
assessed under two approaches: the species-oriented 
and the pattern-oriented (Fischer and Lindenmayer, 
2007). Pattern-oriented approach originated from the 
island biogeography theory (MacArthur and Wilson, 
1967) is the strongest hold on landscape ecology 
research (Fischer and Lindenmayer, 2007; Haila, 2002).

The patch matrix model (PMM) describes landscape 
structure as a mosaic of homogeneous areas discretely 
delineated, with three principal elements, i.e., patches, 
corridor and matrix (Forman and Gordon, 1986; 
Forman, 1995). This model can be addressed through 
landscape composition, which represents the proportion 
of fragment types and landscape configuration that 
describes the spatial aspects of the patch mosaic (e.g. 
size, shape and arrangement). Although the PMM has 
been heavily criticized due to the oversimplification of 
the landscape features, Lausch et al. (2015) suggested 
that this approach should be used in landscapes under 
severe pressure (e.g. urban and agricultural areas) 
because they tend to fix vegetation patterns, creating 
landscapes dominated by homogeneous areas with 
very distinct boundaries. PMM has been the prevailing 
model used due to its simplicity, compatibility with 
data models in geographic information systems, and 
the availability of remotely sensed data (Fischer and 
Lindenmayer, 2007).

Landscape metrics characterize quantitatively the 
landscape structure based on maps or remotely sensed 
images (Kupfer, 2012; Símová and Gdulová, 2012; 
Uuemaa et al., 2009). Several dozens of landscape 
metrics have been proposed to describe landscape 

structure creating an enormous confusion to which 
metrics are appropriate in effectively characterizing 
relevant landscape components (Fan and Myint, 2014; 
McGarigal, 2015; Schindler et al., 2014; Símová and 
Gdulová, 2012). To avoid including a large list of 
redundant variables a pre-selection of metrics is often 
required. This selection can be based on theoretical 
consideration, expert knowledge, previously published 
studies and statistical approaches (Riitters et al., 
1995; Schindler et al., 2014). However, there are no 
universally appropriate indicator variables, because 
their performance depends mainly on each landscape 
context (Schindler et al., 2014; Walz, 2011). In the 
absence of prior knowledge for a specific study system, 
a pre-selection of landscape metrics is a challenging 
task for conservationists and policy-makers interested 
in identifying appropriate indicators (Walz, 2011).

Environmental decision-making process is often 
complex because it relies on experimental results or 
computational models that assess human health and 
ecological risk associated with environmental stressors. 
The interpretation of these results is extremely difficult 
because there are many emerging risks for which 
information is not available and decisions should be 
made under significant uncertainty. Multi-criteria 
decision analyses (MCDA) constitutes a set of useful 
tools for decision-making problems in environmental 
sciences because it allows the combination of a set of 
weighted variables to rank the different alternatives 
under consideration. The use of MCDA as a tool to 
support decision-making in environmental research 
has increased mainly due to the recognition of the 
complexity of environmental problems and the need for 
transparency from stakeholders throughout the process. 
When selecting a particular MCDA approach, it is 
important to consider the complexity of the decision in 
terms of scientific, social and technical factors as well 
as understanding the processes needs and the level of 
available knowledge about the problem (Huang et al., 
2011). 

The multi-objective optimization, also known as multi-
criteria or multi-attribute optimization (MOORA), 
is a process of simultaneously optimizing two or 
more conflicting attributes (objectives) subject to 
certain constraints (Chakraborty, 2011; Gadakh, 2011; 
Karande and Chakraborty, 2012). This method was 
first introduced like a multi-objective optimization 
technique that can be successfully applied to solve 
various types of complex decision making problems 
(Brauers et al., 2008; Brauers and Zavadskas, 2006; 
Karande and Chakraborty, 2012).  Thus the aim of 
this study is identify the set of landscape metrics that 
best characterize the quality of grassland patches in 
the Northern Chihuahuan Desert ecoregion trough 
MOORA approach.

Assessing the quality of Chihuahuan Desert grasslands
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MATERIALS AND METHODS

Study area.- The Chihuahuan Desert encompasses one 
of the most biologically diverse arid regions on earth. 
It covers nearly 630 000 km2, covering from eastern 
Arizona, southern New Mexico, and western Texas, 
USA to the edge on Mexico’s Meseta Central (Figure 
1). Most of the ecoregion lies between 900 and 1500 
m.a.s.l., although foothill areas and some isolated 
mountains in Meseta Central may rise more than 
3000 m.a.s.l. (Dinerstein et al., 2000). The climate is 
relatively uniform with hot summers and cool to cold, 
dry winters; precipitation is monsoonal during the 
summer months ranging from 150 to 500 mm annually 
(Schmidt, 1986). 

Figure 1. Location of the Chihuahuan desert grasslands

The Chihuahuan Desert is composed mainly of two 
types of vegetation. One dominated by shrubs, which 
currently covers more than 85% of its surface and the 
other dominated by grasses, which covers less than 
15% (PMARP, 2012). Chihuahuan desert grasslands 
were formerly characterized by extensive areas of 
tobosagrass (Pleuraphis mutica) and black gramma 
(Bouteloua eriopoda). However, grassland areas 
across this ecoregion are undergoing a large-scale 
transformation mainly due to expanding agriculture, 
urbanization, energy development, desertification (Pool 
et al., 2014) and shrub invasion attributed to climate 

change, over grazing, fire suppression, distribution of 
shrub seeds by domestic livestock and the removal 
of native herbivores (Desmond and Montoya, 2006; 
Manzano-Fischer et al., 2006).

Data sources and processing.- The data used in this 
study consists of two categorical maps and one raster. 
The first categorical map was the 1:50,000 Land Use 
and Vegetation of the state of Chihuahua, Mexico 
(CONAFOR, 2013). The second categorical map was 
the 1:250,000 Land Use and Vegetation covered by the 
rest of the Mexican states within the Chihuahuan Desert 
(INEGI, 2015). The raster was the land cover of North 
America at a scale of 1:10,000,000 with a resolution of 
250 meters (CEC, 2013). Of the resulting map, patches 
classified as natural grassland were identified and 
together with their neighbors polygons were selected 
to create a raster file with a resolution of 200 meters in 
ArcGIS 10.0. 

Landscape structure analysis.- This study computed 
14 metrics at patch level, available in FRAGSTATS 
software package (McGarigal et al., 2002) as follows: 
area (AREA), perimeter (PERIM), radius of gyration 
(GYRATE), perimeter-area ratio (PARA), shape index 
(SHAPE), fractal dimension index (FRAC), related 
circumscribing circle (CIRCLE), contiguity index 
(CONTIG), core area (CORE), number of core areas 
(NCA), core area index (CAI) Euclidean nearest 
neighbor distance (ENN), proximity index (PROX) and 
similarity index (SIMI) (Table 1).

Multi-objective optimization on the basis of ratio 
analysis (MOORA) method.- The MOORA method 
(Brauers and Zavadskas, 2006) starts with a decision 
matrix showing the response of different alternatives 
with respect to various objectives (attributes): 

                                                                                                                                 

Where xij is the response of alternative j to objective 
i, i 0 1,2,…, n are the objectives, j= 1,2,… m are the 
alternatives.

The MOORA method is based on a ratio system in 
which the response of each alternative is compared 
to a denominator which is representative for all 
the alternatives concerning that objective. For this 
denominator the square root of the sum of squares of 
each alternative per objective is chosen. This ratio can 
be expressed as: 
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Where  xij = response of alternative j to objective i, j = 
1, 2,…, m; m the number of alternatives,  i = 1, 2,…, n; 
n being the number of objectives, 
Nxij = a dimensionless number representing the 
normalized response of alternative j to objective i; 
these normalized responses of the alternatives to the 
objectives belong to the interval [0;1].

For the multi-objective optimization, these normalized 
responses of each alternative are added in case of 
maximization (beneficial attributes) and subtracted 
in case of minimization (non beneficial attributes) as 
outlined below:
                             

                                                     

with:
i = 1, 2,…, g for the objectives to be maximized, i = g + 
1, g + 2,…, n for the objectives to be minimized,
Nyi = the normalized assessment of alternative j with 
respect to all objectives.

In this formula linearity concerns dimensionless 
measure in the interval [0;1]. An ordinal ranking of the  
shows the final preference.
In some cases, it is observed that some objectives are 
more important than others. In order to give more 
importance to an attribute, it could be multiplied by its 
corresponding weight.

                                                                                    (4)

 Where Wj=the weight of jth attribute

The Nyi value can be positive or negative depending of 
the totals of its maximized (beneficial attributes) and 
minimized (non-beneficial attributes) in the decision 
matrix. An ordinal ranking of Nyi shows the final 
preference. Thus, the best alternative has the highest  
Nyi value, while the worst alternative has the lowest  
Nyi  value.     

Statistical analysis.- To select the landscape structure 
variables that were used to build the different MOORA 
combinations, a principal component analysis (PCA) 
was used, which was performed in SPSS (IBM SPSS, 
2013). Pearson correlation analysis allowed detecting 
redundancy between landscape metrics that helped 
establishing the number of MOORA and their variable 
combinations. Eigenvalues of the PCA were used to 
weight each landscape metric in every MOORA set. 
The similarity of the results of each MOORA set was 
evaluated with a dendrogram built with the Euclidean 

distances using SPSS (IBM SPSS, 2013). The first 
dendrogram was created using the 30 best patches 
selected by each MOORA set. The second one was the 
result of using the 30 worst patches selected by each 
MOORA set. To evaluate the precision of the quality 
established by each MOORA set a Kappa analysis 
was conducted, which provides a quantitative measure 
of agreement between categorical variables. Kappa 
is calculated from the difference between how much 
agreement is actually present (observed agreement) 
compared to how much agreement would be expected 
to be present by chance alone (expected agreement) 
(Viera and Garrett, 2005). Kappa value is standardized 
to lie on a -1 to 1 scale, where 1 is perfect agreement, 0 
is exactly what would be expected by chance. Negative 
values indicate agreement less than chance. 

RESULTS

A total of 22,045 patches of natural grassland were 
identified in the Chihuahuan Desert Ecoregion. The 
14 landscape metrics calculated to assess the quality 
of each of these fragments are summarized in Table 
2. In order to select the variables that constitute each 
MOORA set a PCA analysis was conducted. Cross-
correlation between variables showed a variety of 
complex relationships (Table 3). AREA-CORE was 
completely redundant, while AREA-PERIM, AREA-
NCORE, PERIM-CORE, and GYRATE-NCORE were 
strongly correlated in a positive way. While PARA-
CONTIG showed a strong and positive correlation, 
PROX, SIMI, and ENN did not correlate with other 
metrics. 

Nine MOORA sets were built based on the performance 
of landscape metrics of Chihuahuan Desert grasslands 
through a PCA and literature review where theoretical 
relations were established between variables (Table 4). 
Using the 30 best and 30 worst quality patches with 
each MOORA combination, it was determined that sets 
5, 7, 8 and 9 were most similar when selecting the best 
grassland patches (Figure 2). 

While the MOORA combinations 2, 6, 7, 8 and 9 were 
similar in the selection of the worst grassland patches 
(Figure 3). MOORA sets 7, 8 and 9 are consistent 
in discriminating between patches that have good 
landscape features and those who do not have them.

The level of agreement between all possible pairs of 
MOORA set combinations, using the Kappa statistic 
value showed that 5.55% of them had an almost perfect 
agreement, 8.3% had a substantial agreement, 16.66% 
had a moderate agreement, 47.22% had a fair agreement, 
while 22.22% had a slight agreement (Table 5).   

Assessing the quality of Chihuahuan Desert grasslands
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Figure 2. Euclidean distance dendogram of the 30 best 
grassland fragments selected by each MOORA combination

Figure 3. Euclidean distance dendogram of the 30 worst 
grassland fragments selected by each MOORA combination

DISCUSSION 

The values of the landscape metrics estimated for 
the 22,045 grassland patches confirmed the high 
fragmentation of the Chihuahuan Desert grasslands 
described in many studies (Curtin et al., 2002; Manzano-
Fischer and Cruzado, 2010; Manzano-Fischer et al., 
2006; Pidgeon et al., 2001; Pool et al., 2014). The AREA, 

PERIM, and GYRATE metrics reveled that the extent 
of grassland patches is highly variable. The SHAPE, 
FRAC, and CIRCLE metrics showed that despite the 
extent of the patch, most grassland patches tend to have 
simple perimeters with very little convolutions. The 
CONTIG metric indicates that the spatial connectedness 
of most grassland patches is limited and the PROX, 
SIMI, and ENN metrics showed that the aggregation 
of grassland patches is highly variable throughout the 
ecoregion. The ambiguity about how far the edge effect 
influences the patches is a species specific attribute 
(Helzer and Jelinski, 1999). Therefore, the use of 
CORE, NCORE and CAI metrics seems not appropriate 
for general fragmentation models.

The redundancy found between AREA with CORE, 
PERIM, NCORE, and GYRATE was consistent with 
previous studies (Szabó et al., 2014). This is mainly 
because these metrics represent patch extent and 
therefore polygon area has a very strong influence on 
their formulation. The strong and positive correlation 
found between PARA and CONTIG is because both 
metrics incorporate the extent and shape to address 
patch complexity (Helzer and Jelinski, 1999). However, 
Szabó et al. (2014) found a strong negative correlation 
between these metrics. PROX, SIMI, and ENN did not 
correlate with other metrics. Consequently, they can 
be regarded as the ones providing unique information 
when selecting indices to characterize a particular 
fragment. Szabó et al. (2014) found that the only non-
correlated metrics were PROX and ENN.

It has been established that landscape metrics are very 
difficult to interpret and associate to ecological patterns 
and processes (Cushman et al., 2008). Therefore, 
we thoroughly analyzed each landscape metric both 
theoretically and empirically to establish the MOORA 
decision for maximizing (positive influence) or 
minimizing (negative influence). The MOORA method 
was chosen to integrate the landscape metrics and build 
the fragmentation model, because we considered that it 
is the most robust of all the multi-objective optimization 
techniques. This method is the only one that fulfills the 
seven conditions of robustness used to evaluate the 
performance of MCDA. It includes all stakeholders, 
evaluation objectives, response alternatives, it is based 
on cardinal numbers, it uses only non-subjective 
estimators, it uses the latest information available, 
and it uses two different methods of multi objective 
optimization (the ratio system and the reference point 
approach) (Brauers and Zavadskas, 2009, 2012). 

In addition to the mathematical robustness, the operation 
of this method is very simple. Chakraborty (2011) 
compared the MOORA to other multi-objective methods 
(AHP, TOPSIS, ELECTRE, VIKOR, PROMETHEE, 
and GRA) and demonstrated that the MOORA method 
besides being mathematically robust, is very simple to 
comprehend and easy to implement because it involves 
the least amount of mathematical calculations and 
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minimal computational skills are required. Therefore, 
the MOORA method is highly recommended to assist 
during any complex decision-making process, such as 
the determination of the quality of grassland patches of 
the Chihuahua Desert.

Landscape metric combination established in MOORA 
7, MOORA 8, and MOORA 9 were consistent in 
selecting the same patches of good quality and poor 
quality. The four metrics used in MOORA 7 (AREA, 
ENN, PROX and SIMI) were the least correlated 
between themselves. While the MOORA 8 uses the 
AREA and PERIM which are highly correlated. The 
effect of the PERIM was absorbed by the AREA 
because it was minimized. Therefore, AREA, ENN, 
PROX and SIMI were again the important indicators. 
Finally, in MOORA 9, PARA was used instead of AREA 
and/or PERIM. PARA equals to the ratio of the patch 
perimeter to its area and it has been established that 
PARA is strongly influenced by patch area (McGarigal 
et al., 2002). 

The KAPPA value showed that MOORA 7 and 
MOORA 8 had an almost perfect agreement when 
assigning patch quality. Cushman et al. (2008) noted 
that it is desirable that a smaller number of independent 
variables be included when describing landscape 
structure (Cushman et al., 2008). Therefore, we 
propose that MOORA 7 (AREA, ENN, PROX and 
SIMI) includes the patch metrics that best describe the 
grassland patches of the Chihuahuan Desert Ecoregion. 

CONCLUSIONS

The values of the patch metrics confirmed the 
intense fragmentation that they are undergoing of the 
Chihuahuan Desert landscape and demonstrate that 
grasslands ecosystem are in a state of vulnerability. The 
enormous structural variation of grassland patches (e.g. 
area, shape and isolation) within the ecoregion and the 
redundancy of this fragmentation indices make difficult 
to identify which attributes were the best descriptors to 
identify grasslands remnants that have a higher quality 
and thus can be selected as priorities for conservation. 
The MCDA MOORA method used in this study proved 
to be simple, easy to understand, and mathematically 
robust to discriminate different sets of landscape 
metrics. This tool allows to simultaneously considering 
any number of attributes with their relative importance 
and offering a more objective and logical attribute 
selection approach. 

Finally, it is possible to conclude that the best set of 
landscape metrics to describe the quality of Chihuahuan 
Desert Grassland patches includes the area, Euclidean 
nearest-neighbor distance, and proximity and similarity 
coefficients.
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Table I. Description of patch-base metrics for the raster image integrated with grassland patch of the Chihuahuan Desert calculated in FRAGSTAT 
4.1 Software package (Mcgarigal, 2015).
Indicator Description Units Range

AREA
Equals the area (m2) of the patch, divided by
10 000. The area of each patch comprising a landscape mosaic is perhaps the single 
most important and useful piece of information contained in the landscape.

Hectares AREA > 0, without limit

PERIM
Equals the perimeter (m) of the patch, including any internal holes in the patch. 
The perimeter of a patch is treated as an edge, and the intensity and distribution of 
edges constitutes a major aspect of landscape pattern

Meters PERIM > 0, without limit

GYRATE Equals the mean distance (m) between each cell in the patch and the patch 
centroid. Radius of gyration is a measure of patch extent Meters Gyrate ≥ 0, without limit

PARA
Equals the ratio of the patch perimeter (m) to area (m2). Perimeter-area ratio is 
a simple measure of shape complexity, but without standardization to a simple 
Euclidean shape.

None PARA > 0, without limit

SHAPE

Equals patch perimeter (m) divided by the square root of patch area (m2), adjusted 
by a constant to adjust for a square standard. Shape index corrects for the size 
problem of the perimeter-area ratio index by adjusting for a square standard and, 
as a result, is the simplest and perhaps most straightforward measure of shape 
complexity.

None
SHAPE ≥ 1, without limit
SHAPE = 1 when the patch is a 
square and increase whitout limit as 
patch shape becomes more irregular.

FRAC
Equals the logarithm of patch perimeter (m) divided by the logarithm of patch area 
(m2); the perimeter is adjusted to correct for the raster bias in perimeter. Fractal 
dimension index is appealing because it reflects shape complexity across a range of 
spatial scales.

None 1 ≤ FRAC ≤ 2

CIRCLE Equals 1 minus patch area (m2) divided by the area (m2) of the smallest 
circumscribing circle. This index is not influenced by patch size. None

0 ≤ CIRCLE < 1
CIRCLE = 0 for square patches and 
approaches 1 for elongated, linear 
patches one cell wide

CONTIG
Equals the average contiguity value for the cells in a patch minus 1, divided by 
the sum of the template values minus 1. Contiguity index assesses the spatial 
connectedness, or contiguity of cells within a grid-cell patch to provide an index on 
patch boundary configuration and thus patch shape

None

0 ≤ CONTIG ≤ 1
CONTIG equals 0 for a one-pixel 
patch and increases to a limit of 1 as 
patch congruity, or connectedness, 
increases.

CORE
Equals the area (m2) within the patch that is further than the specified depth-of-
edge distance from the patch perimeter, divided by 10,000. Core area index is a 
relative index that quantifies core area as a percentage of patch area

Hectares

CORE ≥ 0, without limit
CORE = 0 when every location within 
the patch is within the specified 
depth-of edge distance from the 
patch perimeter. CORE approaches 
AREA as the specified depth-of-edge 
distance decreases and as patch shape 
is simplified

NCORE
Equals the number of disjunctive core areas contained within the patch boundary. 
A disjunction core is a spatially contiguous (and therefore distinct) core area. 
Depending on the size and shapes of the patch and the specified depth-of-edge 
distance(s), a single patch may actually contain several disjunctive core areas.  

None

CORE ≥ 0, without limit
NCORE = 0 when CORE = 0 (every 
location within the patch is within the 
specified depth-of-edge distance from 
the patch perimeter)
NCORE > 1 when, because of shape, 
the patch contains disjunctive core 
areas

CAI
Equals the patch core area (m2) divided by total patch area (m2), multiplied by 100 
(to convert to a percentage); in other words, CAI equals the percentage of a patch 
that is core area. Core area index is a relative index that quantifies core area as a 
percentage of patch area. 

Percent
0 ≤ CAI < 100
CAI approaches 100 when the patch, 
because of size, shape, and edge 
width, conns mostly core area

ENN
Equals the distance (m) to the nearest neighboring patch of the same type, based 
on shorts edge-to-edge distance. Note that the edge to edge distances are from cell 
center to cell center. Euclidean nearest-neighbor distance is perhaps the simplest 
measure of patch context and has been used extensively to quantify patch isolation.

Meters
ENN > 0, without limit
ENN approaches ) as the distance to 
the nearest neighbor decreases

PROX
Equals the sum of patch area (m2) divided by the nearest edge to edge distance 
squared (m2) between the patch and the focal patch of all patches of the 
corresponding patch type whose edges are within a specified distance (m) of the 
focal patch.

None

PROX ≥ 0
PROX = ) if a patch has no neighbors 
of the same patch type within the 
specified radius. PROX increases 
as the neighborhood is increasingly 
occupied by patches of the same type 
and as this patches become closer and 
more contiguous in distribution

SIMI
Equals the sum, over all neighboring patches with edges within a specified distance 
the focal patch type and the class of the neighboring patch (0-1), divided by 
the nearest edge-to edge distance squares (m2) between the focal patch and the 
neighboring patch.

None

SMI ≥ 0
SIMI = 0 if all the patches within 
the specified neighborhood have a 0 
similarity coefficient. SIMI increases 
as the neighborhood is increasingly 
occupied by patches with greater 
similarity coefficients and as this 
similar patches become closer and 
more contiguous and less fragmented 
in distribution
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Table II. Descriptive statistics of the metric  landscape of the natural grassland found in the Chihuahuan Desert Ecoregion 

Mean Standard deviation Minimum Maximum
AREA 671.45 71258.15 4 10572632
PERIM 11264.32 564066.34 800 83099600

GYRATE 334.59 1319.42 100 163609.98
PARA 133.73 49.89 7.53 200

SHAPE 1.4 0.97 1 63.88
FRAC 1.04 0.04 1 1.33

CIRCLE 0.47 0.27 0 0.96
CONTIG 0.29 0.23 0 0.95

CORE 530.25 63135.48 0 9370160
NCORE 0.69 13.52 0 1877

CAI 5.75 13.12 0 89.21
PROX 6433.59 60423.26 0 660828.25
SIMI 2434274.45 2846722.82 0 13113770.11

ENN 834.58 1832.57 400 117459.95
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Table IV. Number of principal component of each set of landscape metrics with the weight and MOORA decision of each landscape 
metric in all MOORA combinations

Eigenvalues of PCA Landscape metrics Weight MOORA Decision 

MOORA 1

43.89

AREA 7.35 Maximize
PERIM 7.35 Minimize

GYRATE 7.35 Maximize
SHAPE 7.35 Minimize
CORE 7.35 Maximize

NCORE 7.35 Minimize

30.91

PARA 6.18 Minimize
FRACC 6.18 Minimize
CIRCLE 6.18 Minimize
CONTIG 6.18 Maximize

CAI 6.18 Maximize
8.68 ENN 8.68 Minimize
8.54 PROX 8.54 Maximize
7.97 SIMI 7.97 Maximize

MOORA 2

32.30
CONTIG 16.15 Maximize

SIMI 16.15 Maximize
23.55 PROX 23.55 Maximize
22.29 ENN 22.29 Minimize
21.87 GYRATE 21.87 Maximize

MOORA 3

45.30

PARA 9.06 Minimize
SHAPE 9.06 Minimize
FRAC 9.06 Minimize

CIRCLE 9.06 Minimize
CONTIG 9.06 Maximize

31.36
AREA 10.45 Maximize
PERIM 10.45 Minimize

GYRATE 10.45 Maximize

11.65
PROX 5.82 Maximize
ENN 5.82 Minimize

11.65 SIMI 11.65 Maximize

MOORA 4
58.97

AREA 29.48 Maximize
SHAPE 29.48 Minimize

41.02
SIMI 20.51 Maximize
ENN 20.51 Minimize

MOORA 5

41.84
AREA 20.92 Maximize

SHAPE 20.92 Minimize
29.27 ENN 29.27 Minimize

28.87
PROX 14.43 Maximize
SIMI 14.43 Maximize

MOORA 6

45.04
GYRATE 22.52 Maximize
SHAPE 22.52 Minimize

27.65 ENN 27.65 Minimize

27.29
SIMI 13.64 Maximize

PROX 13.64 Maximize

MOORA 7

24.73 AREA 24.73 Maximize
25.57 ENN 25.57 Minimize
25.97 PROX 25.97 Maximize
23.71 SIMI 23.71 Maximize

MOORA 8

48.73 AREA 24.36 Maximize
PERIM 24.36 Minimize

25.79 ENN 25.79 Minimize

25.47 PROX 12.73 Maximize
SIMI 12.73 Maximize
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MOORA 9
40.19 PARA 20.09 Minimize

SIMI 20.09 Maximize
30.80 PROX 30.80 Maximize
28.99 ENN 28.99 Minimize

Table V. Agreement analysis and correlation analysis between the different MOORA combinations. Above the diagonal is the 
agreement Kappa value and below the diagonal is the Kappa value interpretation of the level of agreement

MOORA 1 MOORA 2 MOORA 3 MOORA 4 MOORA 5 MOORA 6 MOORA 7 MOORA 8 MOORA 9

MOORA 1 * 0.2818
p=0.00

0.7973
p=0.00

0.1067
p=0.11

0.1315
p=0.05

0.2815
p=0.00

0.3939
p=0.00

0.3451
p=0.00

0.3790
p=0.00

MOORA 2 Fair * 0.1711
p=0.00

0.1335
p=0.06

0.1870
p=0.00

0.2188
p=0.00

0.2732
p=0.00

0.2199
p=0.00

0.5951
p=0.00

MOORA 3 Substantial Slight * 0.1797
p=0.00

0.2016
p=0.00

0.3250
p=0.00

0.4859
p=0.00

0.3639
p=0.00

0.4533
p=0.000

MOORA 4 Slight Slight Slight * 0.8960
p=0.00

0.6632
p=0.00

0.2765
p=0.00

0.3905
p=0.00

0.1331
p=0.27

MOORA 5 Slight Slight Fair Almost 
perfect * 0.7649

p=0.00
0.3473
p=0.00

0.4534
p=0.00

0.1828
p=0.01

MOORA 6 Fair Fair Fair Substantial Substantial * 0.4241
p=0.00

0.5209
p=0.00

0.2606
p=0.00

MOORA 7 Fair Fair Moderate Fair Fair Moderate * 0.8113
p=0.00

0.3893
p=0.00

MOORA 8 Fair Fair Fair Fair Moderate Moderate Almost 
perfect * 0.2872

p=0.00
MOORA 9 Fair Moderate Moderate Slight Slight Fair Fair Fair *
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